Henrique Idogava, Daniel Marcos Souza do Couto, Leonardo Santana, J. L. Alves, Z. C. Silveira
{"title":"AltPrint: new filling and slicing process planning based on deposited material with geometry variation","authors":"Henrique Idogava, Daniel Marcos Souza do Couto, Leonardo Santana, J. L. Alves, Z. C. Silveira","doi":"10.1108/rpj-06-2022-0208","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to address the development and implementation of “AltPrint,” a slicing algorithm based on a new filling process planning from a variation in the deposited material geometry. AltPrint enables changes in the extruded material flow toward local variations in stiffness. The technical feasibility evaluation was conducted experimentally by fused filament fabrication (FFF) process of snap-fit subjected to a mechanical cyclical test.\n\n\nDesign/methodology/approach\nThe methodology is based on the estimation of the parameter E from the mathematical relationships among the variation of the material in the material flow, nozzle geometry and extrusion parameters. Calibration, validation and analysis of the printed specimens were divided into two moments, of which the first refers to the material responses (flexural and dynamic mechanical analysis) and the second involves the analysis of the printed components with localized flow properties (for estimating the response to cyclic loading). Finite element analysis assisted in the comparison of two snap-fit geometries, one traditional and one generated by AltPrint. Finally, three examples of compliant mechanisms were developed to demonstrate the potential of the algorithm in the generation of functional prototypes.\n\n\nFindings\nThe contribution of AltPrint is the variable fill width integrated with the slicing software that varies the print parameters in different regions of the object. The alternative extrusion method based on material rate variation was conceived as an “open software” available in GitHub platform, hence, open manufacturing with initial focus on desktop 3D printer based on FFF. The slicing method provides deposited variable-width segments in an organized and replicable filling strategy, resulting in mechanical properties variations in specific regions of a part. It was implemented and evaluated experimentally and indicated potential applications in parts manufactured by the additive process based on extrusion, which requires local flexibilities.\n\n\nOriginality/value\nThis paper presents a new alternative method for application in an open additive manufacturing context, specifically for additive extrusion techniques that enable local variations in the material flow. Its potential for manufacturing functional parts, which require flexibility due to cyclic loading, was demonstrated by fabrication and experimental evaluations of parts made in acrylonitrile butadiene styrene filament. The changes proposed by AltPrint enable geometric modifications in the response of the printed parts. The proposed slicing and filling control of parameters is inserted in a context of design for additive manufacturing and shows great potential in the area of product design.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-06-2022-0208","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to address the development and implementation of “AltPrint,” a slicing algorithm based on a new filling process planning from a variation in the deposited material geometry. AltPrint enables changes in the extruded material flow toward local variations in stiffness. The technical feasibility evaluation was conducted experimentally by fused filament fabrication (FFF) process of snap-fit subjected to a mechanical cyclical test.
Design/methodology/approach
The methodology is based on the estimation of the parameter E from the mathematical relationships among the variation of the material in the material flow, nozzle geometry and extrusion parameters. Calibration, validation and analysis of the printed specimens were divided into two moments, of which the first refers to the material responses (flexural and dynamic mechanical analysis) and the second involves the analysis of the printed components with localized flow properties (for estimating the response to cyclic loading). Finite element analysis assisted in the comparison of two snap-fit geometries, one traditional and one generated by AltPrint. Finally, three examples of compliant mechanisms were developed to demonstrate the potential of the algorithm in the generation of functional prototypes.
Findings
The contribution of AltPrint is the variable fill width integrated with the slicing software that varies the print parameters in different regions of the object. The alternative extrusion method based on material rate variation was conceived as an “open software” available in GitHub platform, hence, open manufacturing with initial focus on desktop 3D printer based on FFF. The slicing method provides deposited variable-width segments in an organized and replicable filling strategy, resulting in mechanical properties variations in specific regions of a part. It was implemented and evaluated experimentally and indicated potential applications in parts manufactured by the additive process based on extrusion, which requires local flexibilities.
Originality/value
This paper presents a new alternative method for application in an open additive manufacturing context, specifically for additive extrusion techniques that enable local variations in the material flow. Its potential for manufacturing functional parts, which require flexibility due to cyclic loading, was demonstrated by fabrication and experimental evaluations of parts made in acrylonitrile butadiene styrene filament. The changes proposed by AltPrint enable geometric modifications in the response of the printed parts. The proposed slicing and filling control of parameters is inserted in a context of design for additive manufacturing and shows great potential in the area of product design.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation