Engineering co-emergence in organoid models

IF 5 Q1 ENGINEERING, BIOMEDICAL
I. Vasić, T. McDevitt
{"title":"Engineering co-emergence in organoid models","authors":"I. Vasić, T. McDevitt","doi":"10.1088/2516-1091/abe41e","DOIUrl":null,"url":null,"abstract":"Pluripotent stem cell-derived organoids provide in vitro models of development and disease that can be used for a wide range of biomedical applications, including high-throughput screens or regenerative medicine. The ability of stem cells to self-renew and self-organize in three dimensions is the basis for creating highly structured multicellular organoid models. However, progress in clinical translation of organoid technologies has been stymied by the stochastic nature of stem cell differentiation within organoids, which leads to inconsistent cell type maturity, tissue function, reproducibility, and control over macroscale structure and phenotype(s). Advances in our understanding of developmental biology and the mechanisms which regulate symmetry breaking and pattern formation in the embryo have led to new approaches for engineering cooperative emergence (co-emergence) in organoid models to address these challenges.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/abe41e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pluripotent stem cell-derived organoids provide in vitro models of development and disease that can be used for a wide range of biomedical applications, including high-throughput screens or regenerative medicine. The ability of stem cells to self-renew and self-organize in three dimensions is the basis for creating highly structured multicellular organoid models. However, progress in clinical translation of organoid technologies has been stymied by the stochastic nature of stem cell differentiation within organoids, which leads to inconsistent cell type maturity, tissue function, reproducibility, and control over macroscale structure and phenotype(s). Advances in our understanding of developmental biology and the mechanisms which regulate symmetry breaking and pattern formation in the embryo have led to new approaches for engineering cooperative emergence (co-emergence) in organoid models to address these challenges.
类器官模型的工程共现
多能干细胞衍生的类器官提供了发育和疾病的体外模型,可用于广泛的生物医学应用,包括高通量筛选或再生医学。干细胞自我更新和三维自我组织的能力是创建高度结构化的多细胞类器官模型的基础。然而,类器官技术的临床转化进展一直受到类器官内干细胞分化的随机性的阻碍,这导致细胞类型成熟度、组织功能、可重复性以及对宏观结构和表型的控制不一致。我们对发育生物学和调节胚胎对称性破坏和模式形成的机制的理解的进步,导致了在类器官模型中设计合作出现(共同出现)的新方法来解决这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信