Exoskeleton for ankle joint flexion/extension rehabilitation

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
José Luis Sarmiento Ramos, Juan Camilo Suárez Galvis, Valentina Grisales Muñoz
{"title":"Exoskeleton for ankle joint flexion/extension rehabilitation","authors":"José Luis Sarmiento Ramos, Juan Camilo Suárez Galvis, Valentina Grisales Muñoz","doi":"10.15332/iteckne.v19i2.2773","DOIUrl":null,"url":null,"abstract":"This work presents the modelling, design, construction, and control of an exoskeleton for ankle joint flexion/extension rehabilitation. The dynamic model of the ankle flexion/extension is obtained through Euler-Lagrange formulation and is built in Simulink of MATLAB using the non-linear differential equation derived from the dynamic analysis. An angular displacement feedback PID controller, representing the human neuromusculoskeletal control, is implemented in the dynamic model to estimate the joint torque required during ankle movements. Simulations are carried out in the model for the ankle flexion/extension range of motion (ROM), and the results are used to select the most suitable actuators for the exoskeleton. The ankle rehabilitation exoskeleton is designed in SolidWorks CAD software, built through 3D printing in polylactic acid (PLA), powered by two on-board servomotors that deliver together a maximum continuous torque of 22 [kg cm], and controlled by an Arduino board that establishes Bluetooth communication with a mobile app developed in MIT App Inventor for programming the parameters of the rehabilitation therapies. The result of this work is a lightweight ankle exoskeleton, with a total mass of 0.85 [kg] including actuators (servomotors) and electronics (microcontroller and batteries), which can be used in telerehabilitation practices guaranteeing angular displacement tracking errors under 10%.","PeriodicalId":53892,"journal":{"name":"Revista Iteckne","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iteckne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15332/iteckne.v19i2.2773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the modelling, design, construction, and control of an exoskeleton for ankle joint flexion/extension rehabilitation. The dynamic model of the ankle flexion/extension is obtained through Euler-Lagrange formulation and is built in Simulink of MATLAB using the non-linear differential equation derived from the dynamic analysis. An angular displacement feedback PID controller, representing the human neuromusculoskeletal control, is implemented in the dynamic model to estimate the joint torque required during ankle movements. Simulations are carried out in the model for the ankle flexion/extension range of motion (ROM), and the results are used to select the most suitable actuators for the exoskeleton. The ankle rehabilitation exoskeleton is designed in SolidWorks CAD software, built through 3D printing in polylactic acid (PLA), powered by two on-board servomotors that deliver together a maximum continuous torque of 22 [kg cm], and controlled by an Arduino board that establishes Bluetooth communication with a mobile app developed in MIT App Inventor for programming the parameters of the rehabilitation therapies. The result of this work is a lightweight ankle exoskeleton, with a total mass of 0.85 [kg] including actuators (servomotors) and electronics (microcontroller and batteries), which can be used in telerehabilitation practices guaranteeing angular displacement tracking errors under 10%.
外骨骼用于踝关节屈伸康复
这项工作介绍了用于踝关节屈曲/伸展康复的外骨骼的建模、设计、构造和控制。通过欧拉-拉格朗日公式建立了踝关节屈伸的动力学模型,并利用动力学分析得到的非线性微分方程在MATLAB的Simulink中建立了该模型。在动态模型中实现了代表人类神经肌肉骨骼控制的角位移反馈PID控制器,以估计脚踝运动过程中所需的关节扭矩。在模型中对踝关节屈曲/伸展运动范围(ROM)进行了模拟,并将结果用于选择最适合外骨骼的致动器。脚踝康复外骨骼是在SolidWorks CAD软件中设计的,通过聚乳酸(PLA)3D打印构建,由两个车载伺服电机提供动力,共同提供22[kg-cm]的最大连续扭矩,并由Arduino板控制,该板与MIT app Inventor中开发的移动应用程序建立蓝牙通信,用于编程康复疗法的参数。这项工作的结果是一种重量轻的脚踝外骨骼,总质量为0.85公斤,包括致动器(伺服电机)和电子设备(微控制器和电池),可用于远程康复实践,确保角位移跟踪误差低于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Iteckne
Revista Iteckne ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
3
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信