{"title":"Enhanced Penetration Depth during Reduced Pressure Keyhole-Mode Laser Welding","authors":"M. Jiang, T. DebRoy, Y. Chen, X. Chen, W. Tao","doi":"10.29391/2020.99.011","DOIUrl":null,"url":null,"abstract":"Keyhole-mode laser welding under reduced ambient pressure is known to provide improved weld penetration, narrower width, and reduced incidences of defects, but the underlying mechanism for these benefits is not known. We sought to elucidate the mechanism by an experimental and theoretical program of investigation. Potential causative factors, such as the depression of the boiling point of al-loys at reduced pressures and the changes in laser beam attenuation by metal vapors/plasma, were investigated using a well-tested heat transfer and fluid flow model of keyhole-mode laser welding for various ambient pressures. The model was tested with experimental data for the weld-ing of four alloys — Structural Steel Q690, Aluminum Alloy A5083, commercially pure titanium, and Nickel 201 — that have very different thermophysical properties. The results showed the changes in the boiling point alone were unable to explain the enhanced depth of penetration at low ambi-ent pressures. The experimental and calculated fusion zone geometries showed excellent agreement when both the boiling point depression and the beam attenuation by metal vapor were considered. The reduction of ambient pressure also affected the heat transfer pattern near the keyhole, owing to a decrease in the keyhole wall temperature and changes in the temperature gradient near the keyhole wall.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2020.99.011","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 20
Abstract
Keyhole-mode laser welding under reduced ambient pressure is known to provide improved weld penetration, narrower width, and reduced incidences of defects, but the underlying mechanism for these benefits is not known. We sought to elucidate the mechanism by an experimental and theoretical program of investigation. Potential causative factors, such as the depression of the boiling point of al-loys at reduced pressures and the changes in laser beam attenuation by metal vapors/plasma, were investigated using a well-tested heat transfer and fluid flow model of keyhole-mode laser welding for various ambient pressures. The model was tested with experimental data for the weld-ing of four alloys — Structural Steel Q690, Aluminum Alloy A5083, commercially pure titanium, and Nickel 201 — that have very different thermophysical properties. The results showed the changes in the boiling point alone were unable to explain the enhanced depth of penetration at low ambi-ent pressures. The experimental and calculated fusion zone geometries showed excellent agreement when both the boiling point depression and the beam attenuation by metal vapor were considered. The reduction of ambient pressure also affected the heat transfer pattern near the keyhole, owing to a decrease in the keyhole wall temperature and changes in the temperature gradient near the keyhole wall.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.