Nontraditional Natural Filler-Based Biocomposites for Sustainable Structures

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
K. Mohan kumar, Venkatesh Naik, Vijayananda Kaup, S. Waddar, N. Santhosh, H. V. Harish
{"title":"Nontraditional Natural Filler-Based Biocomposites for Sustainable Structures","authors":"K. Mohan kumar, Venkatesh Naik, Vijayananda Kaup, S. Waddar, N. Santhosh, H. V. Harish","doi":"10.1155/2023/8838766","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a growing awareness and demand for global sustainability, as well as a mandate for the use of renewable and environmentally sustainable materials and processes. Due to which, massive efforts are being made to develop and nurture the next generation of composite materials that are energy efficient, environmentally friendly, and biodegradable. Light weight, lower coefficient of thermal expansion, and comparable tensile strength exhibited by natural fibers render them the choice for use in several industrial products and applications over the last decade. Natural fibers as the reinforcing entity are pitted against their synthetic variants primarily because of the superior aspects like biodegradability and excellent strength-to-weight ratio. This article presents the review on various nonconventional natural fibers such as tamarind seed and shell, Luffa cylindrica, groundnut shell, coconut coir, papaya bast, okra, and Ashoka tree seed. The flow of the chapter includes the introduction, extraction methodologies, and fabrication, and investigations of mechanical properties, applications, and sustainability are dealt in detail for nontraditional natural fibers. The okra fibers possess greater tensile strength of up to 262.8 MPa in comparison with other fibers, while the Ashoka tree seed fibers are known to possess a maximum flexural strength of up to 125 MPa. Further, these fibers are used as reinforcements in potential applications in interiors and automobile and aircraft panels and wood-based particle board composites owing to the increase in tensile and flexural strengths of composites.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8838766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, there has been a growing awareness and demand for global sustainability, as well as a mandate for the use of renewable and environmentally sustainable materials and processes. Due to which, massive efforts are being made to develop and nurture the next generation of composite materials that are energy efficient, environmentally friendly, and biodegradable. Light weight, lower coefficient of thermal expansion, and comparable tensile strength exhibited by natural fibers render them the choice for use in several industrial products and applications over the last decade. Natural fibers as the reinforcing entity are pitted against their synthetic variants primarily because of the superior aspects like biodegradability and excellent strength-to-weight ratio. This article presents the review on various nonconventional natural fibers such as tamarind seed and shell, Luffa cylindrica, groundnut shell, coconut coir, papaya bast, okra, and Ashoka tree seed. The flow of the chapter includes the introduction, extraction methodologies, and fabrication, and investigations of mechanical properties, applications, and sustainability are dealt in detail for nontraditional natural fibers. The okra fibers possess greater tensile strength of up to 262.8 MPa in comparison with other fibers, while the Ashoka tree seed fibers are known to possess a maximum flexural strength of up to 125 MPa. Further, these fibers are used as reinforcements in potential applications in interiors and automobile and aircraft panels and wood-based particle board composites owing to the increase in tensile and flexural strengths of composites.
用于可持续结构的非传统天然填料基生物复合材料
近年来,人们对全球可持续发展的认识和需求日益增长,并要求使用可再生和环境可持续的材料和工艺。因此,人们正在大力开发和培育下一代节能、环保、可生物降解的复合材料。天然纤维重量轻,热膨胀系数低,抗拉强度相当,使其在过去十年中成为几种工业产品和应用的选择。天然纤维作为增强实体与它们的合成变体相竞争,主要是因为其优越的方面,如生物降解性和优异的强度重量比。本文综述了罗望子壳、丝瓜壳、花生壳、椰壳、木瓜皮、秋葵、阿育王树种子等多种非传统天然纤维的研究进展。本章的流程包括介绍、提取方法和制造,并详细讨论了非传统天然纤维的机械性能、应用和可持续性的研究。与其他纤维相比,秋葵纤维具有更高的抗拉强度,最高可达262.8 MPa,而众所周知,阿育王树种子纤维具有高达125 MPa的最大弯曲强度。此外,由于复合材料的拉伸和弯曲强度的增加,这些纤维在内饰、汽车和飞机面板以及木基刨花板复合材料的潜在应用中用作增强材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信