Purshottam Narain Agrawal, Behar Baxhaku, Ruchi Chauhan
{"title":"q-Gamma Type Operators for Approximating Functions of a Polynomial Growth","authors":"Purshottam Narain Agrawal, Behar Baxhaku, Ruchi Chauhan","doi":"10.1007/s40995-023-01507-6","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2021.1960260) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"47 4","pages":"1367 - 1377"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40995-023-01507-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-023-01507-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2021.1960260) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.
期刊介绍:
The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences