Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Patricia Garcia-Muñoz, Fernando Fresno, Víctor A. de la Peña O’Shea, Nicolas Keller
{"title":"Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications","authors":"Patricia Garcia-Muñoz,&nbsp;Fernando Fresno,&nbsp;Víctor A. de la Peña O’Shea,&nbsp;Nicolas Keller","doi":"10.1007/s41061-019-0270-3","DOIUrl":null,"url":null,"abstract":"<p>Ferrites are a large class of oxides containing Fe<sup>3+</sup> and at least another metal cation that have been investigated for and applied to a wide variety of fields ranging from mature technologies like circuitry, permanent magnets, magnetic recording and microwave devices to the most recent developments in areas like bioimaging, gas sensing and photocatalysis. In the last respect, although ferrites have been less studied than other types of semiconductors, they present interesting properties such as visible light absorption, tuneable optoelectronic properties and high chemical and photochemical stability. The versatility of their chemical composition and of their crystallographic structure opened a playground for developing new catalysts with enhanced efficiency. This article reviews the recent development of the application of ferrites to photoassisted processes for environmental remediation and for the synthesis of solar fuels. Applications in the photocatalytic degradation of pollutants in water and air, photo-Fenton, and solar fuels production, via photocatalytic and photoelectrochemical water splitting and CO<sub>2</sub> reduction, are reviewed paying special attention to the relationships between the physico-chemical characteristics of the ferrite materials and their photoactivated performance.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-019-0270-3","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-019-0270-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 44

Abstract

Ferrites are a large class of oxides containing Fe3+ and at least another metal cation that have been investigated for and applied to a wide variety of fields ranging from mature technologies like circuitry, permanent magnets, magnetic recording and microwave devices to the most recent developments in areas like bioimaging, gas sensing and photocatalysis. In the last respect, although ferrites have been less studied than other types of semiconductors, they present interesting properties such as visible light absorption, tuneable optoelectronic properties and high chemical and photochemical stability. The versatility of their chemical composition and of their crystallographic structure opened a playground for developing new catalysts with enhanced efficiency. This article reviews the recent development of the application of ferrites to photoassisted processes for environmental remediation and for the synthesis of solar fuels. Applications in the photocatalytic degradation of pollutants in water and air, photo-Fenton, and solar fuels production, via photocatalytic and photoelectrochemical water splitting and CO2 reduction, are reviewed paying special attention to the relationships between the physico-chemical characteristics of the ferrite materials and their photoactivated performance.

Abstract Image

光辅助环境和太阳能燃料中的铁氧体材料
铁氧体是一类含有Fe3+和至少另一种金属阳离子的氧化物,已经被研究并应用于各种领域,从成熟的技术,如电路,永磁体,磁记录和微波器件,到生物成像,气体传感和光催化等领域的最新发展。在最后一个方面,尽管铁氧体的研究比其他类型的半导体少,但它们具有有趣的特性,如可见光吸收,可调谐的光电特性以及高的化学和光化学稳定性。它们的化学成分和晶体结构的多样性为开发效率更高的新型催化剂开辟了广阔的天地。本文综述了铁氧体在光辅助环境修复和太阳能燃料合成中的应用进展。综述了铁氧体材料在光催化降解水和空气中的污染物、光fenton以及通过光催化和光电化学分解水和CO2还原制备太阳能燃料等方面的应用,重点介绍了铁氧体材料的物理化学特性与其光活化性能之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信