{"title":"Notions of Stein spaces in non-Archimedean geometry","authors":"Marco Maculan, Jérôme Poineau","doi":"10.1090/jag/764","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a non-Archimedean complete valued field and let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-analytic space in the sense of Berkovich. In this note, we prove the equivalence between three properties: (1) for every complete valued extension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k prime\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>k</mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">k’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, every coherent sheaf on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X times Subscript k Baseline k prime\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:msub>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msup>\n <mml:mi>k</mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X \\times _{k} k’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is acyclic; (2) <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is Stein in the sense of complex geometry (holomorphically separated, holomorphically convex), and higher cohomology groups of the structure sheaf vanish (this latter hypothesis is crucial if, for instance, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is compact); (3) <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a suitable exhaustion by compact analytic domains considered by Liu in his counter-example to the cohomological criterion for affinoidicity.</p>\n\n<p>When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has no boundary the characterization is simpler: in (2) the vanishing of higher cohomology groups of the structure sheaf is no longer needed, so that we recover the usual notion of Stein space in complex geometry; in (3) the domains considered by Liu can be replaced by affinoid domains, which leads us back to Kiehl’s definition of Stein space.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/764","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
Abstract
Let kk be a non-Archimedean complete valued field and let XX be a kk-analytic space in the sense of Berkovich. In this note, we prove the equivalence between three properties: (1) for every complete valued extension k′k’ of kk, every coherent sheaf on X×kk′X \times _{k} k’ is acyclic; (2) XX is Stein in the sense of complex geometry (holomorphically separated, holomorphically convex), and higher cohomology groups of the structure sheaf vanish (this latter hypothesis is crucial if, for instance, XX is compact); (3) XX admits a suitable exhaustion by compact analytic domains considered by Liu in his counter-example to the cohomological criterion for affinoidicity.
When XX has no boundary the characterization is simpler: in (2) the vanishing of higher cohomology groups of the structure sheaf is no longer needed, so that we recover the usual notion of Stein space in complex geometry; in (3) the domains considered by Liu can be replaced by affinoid domains, which leads us back to Kiehl’s definition of Stein space.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.