Predicting teacher resilience by using artificial neural networks: influence of burnout and stress by COVID-19

IF 1.4 4区 心理学 Q3 PSYCHOLOGY
Juan Pedro Martínez-Ramón, F. Morales-Rodríguez, S. Pérez-López, Inmaculada Méndez Mateo, C. Ruiz-Esteban
{"title":"Predicting teacher resilience by using artificial neural networks: influence of burnout and stress by COVID-19","authors":"Juan Pedro Martínez-Ramón, F. Morales-Rodríguez, S. Pérez-López, Inmaculada Méndez Mateo, C. Ruiz-Esteban","doi":"10.6018/analesps.515611","DOIUrl":null,"url":null,"abstract":"Background: Resilience in teachers allows them to face difficult situations to recover from adversity and there are gender differences. Likewise, artificial intelligence and the techniques associated with it have proven to be very useful in predicting educational variables and studying the interconnection between them after COVID-19. That said, the general objective of this research was to predict the levels of resilience in secondary school teachers through the design of an artificial neural network (ANN). Method: The Brief Resilient Coping Scale, the Maslach Burnout Inventory and the COVID-19 Stress Questionnaire were administered to 401 secondary school teachers (70.6% female) from schools in southeastern Spain, with a mean age of 44.36 years (SD = 9.38). Results: Differences were found in the configuration of the predictive models of resilience between male and female teachers, with the independent variables contributing to different degrees depending on gender. Conclusions: It is highlighted the usefulness of ANNs in the educational setting and the need to design more adjusted programs.\n Antecedentes: La resiliencia en el profesorado permite afrontar situaciones difíciles y reponerse a la adversidad existiendo diferencias de género al respecto. Asimismo, la inteligencia artificial y las técnicas asociadas a ella han resultado ser de gran utilidad para predecir variables educativas y estudiar la interconexión entre ellas tras la COVID-19. Dicho esto, el objetivo general de esta investigación fue predecir los niveles de resiliencia en las profesoras y profesores de Secundaria a través del diseño de una red neuronal artificial (RNA). Método: Se administró la Escala Breve de Afrontamiento Resiliente, el Inventario de Burnout de Maslach y el Cuestionario de Estrés frente a la COVID-19 a 401 docentes de secundaria (70.6% mujeres) de centros educativos del sureste español, con una edad media de 44.36 años (DT= 9.38). Resultados: Se hallaron diferencias en la configuración de los modelos predictivos de la resiliencia entre profesoras y profesores contribuyendo las variables independientes en diferente grado en función del género. Conclusiones: Se pone de manifiesto la utilidad de las RNA en el ámbito educativo y la necesidad de diseñar programas más ajustados.","PeriodicalId":55521,"journal":{"name":"Anales De Psicologia","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales De Psicologia","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.6018/analesps.515611","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Background: Resilience in teachers allows them to face difficult situations to recover from adversity and there are gender differences. Likewise, artificial intelligence and the techniques associated with it have proven to be very useful in predicting educational variables and studying the interconnection between them after COVID-19. That said, the general objective of this research was to predict the levels of resilience in secondary school teachers through the design of an artificial neural network (ANN). Method: The Brief Resilient Coping Scale, the Maslach Burnout Inventory and the COVID-19 Stress Questionnaire were administered to 401 secondary school teachers (70.6% female) from schools in southeastern Spain, with a mean age of 44.36 years (SD = 9.38). Results: Differences were found in the configuration of the predictive models of resilience between male and female teachers, with the independent variables contributing to different degrees depending on gender. Conclusions: It is highlighted the usefulness of ANNs in the educational setting and the need to design more adjusted programs. Antecedentes: La resiliencia en el profesorado permite afrontar situaciones difíciles y reponerse a la adversidad existiendo diferencias de género al respecto. Asimismo, la inteligencia artificial y las técnicas asociadas a ella han resultado ser de gran utilidad para predecir variables educativas y estudiar la interconexión entre ellas tras la COVID-19. Dicho esto, el objetivo general de esta investigación fue predecir los niveles de resiliencia en las profesoras y profesores de Secundaria a través del diseño de una red neuronal artificial (RNA). Método: Se administró la Escala Breve de Afrontamiento Resiliente, el Inventario de Burnout de Maslach y el Cuestionario de Estrés frente a la COVID-19 a 401 docentes de secundaria (70.6% mujeres) de centros educativos del sureste español, con una edad media de 44.36 años (DT= 9.38). Resultados: Se hallaron diferencias en la configuración de los modelos predictivos de la resiliencia entre profesoras y profesores contribuyendo las variables independientes en diferente grado en función del género. Conclusiones: Se pone de manifiesto la utilidad de las RNA en el ámbito educativo y la necesidad de diseñar programas más ajustados.
利用人工神经网络预测教师适应力:新冠肺炎对倦怠和压力的影响
背景:教师的复原力使他们面临从逆境中恢复过来的困难,并且存在性别差异。同样,人工智能及其相关技术已被证明在预测教育变量和研究新冠疫情后它们之间的相互联系方面非常有用。也就是说,这项研究的总体目标是通过设计人工神经网络来预测中学教师的复原力水平。方法:对西班牙东南部学校的401名中学教师(70.6%为女性)进行了简短的复原力应对量表、Maslach倦怠问卷和新冠病毒压力问卷调查,平均年龄为44.36岁(SD=9.38)。结果:男教师和女教师之间复原力预测模型的配置存在差异,独立变量导致不同程度的复原力取决于性别。结论:强调了人工神经网络在教育设置中的有用性,以及需要设计更多调整的方案。背景:教师的复原力使他们能够面对困难的情况,并通过在这方面存在性别差异来应对逆境。此外,人工智能及其相关技术已被证明在预测新冠病毒后的教育变量并研究它们之间的相互关系方面非常有用。也就是说,这项研究的总体目标是通过设计人工神经网络来预测教师和中学教师的复原力水平。方法:对西班牙东南部教育机构的401名中学教师(70.6%为女性)进行短期弹性应对量表、马斯拉赫倦怠问卷和新冠病毒压力问卷调查,平均年龄为44.36岁(DT=9.38)。结果:通过根据性别不同程度地贡献自变量,发现教师和教师之间的复原力预测模型的结构存在差异。结论:RNA在教育领域的有用性以及设计更紧凑方案的必要性得到了强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anales De Psicologia
Anales De Psicologia 医学-心理学
CiteScore
3.30
自引率
5.90%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Anales de Psicologia / Annals of Psychology is a multidisciplinary journal of the various thematic areas of scientific psychology. It publishes original research articles and theoretical review in any of its basic, applied and methodological areas included within psychology. Publishing, financing, marketing and distribution corresponds Editum: Editions of the University of Murcia (Spain). The organizational guidelines and editorial policies come from the Editorial Team (elected for four years by the Areas and / or Departments of Psychology at the University of Murcia) and the Editorial Board, composed of scholars and experts from different universities and institutions national and international. It is published in print (ISSN: 0212-9728) since 1984 and in Internet publishing (web) (ISSN: 1695-2294) since 2000. Available online full text in pdf from the vol. 1 1984. Anales de Psicologia / Annals of Psychology maintains a system of exchange with other journals and publications of psychology in the world. Through an free exchange agreement with their respective publishers or entities responsible for editing, these journals and publications are received at the University of Murcia (Biblioteca "Luis Vives", near the Faculty of Psychology) and in return, our journal is sent to libraries and educational and research institutions such centers responsible for editing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信