Pengcheng Wang , Ping Hu , Jinping Zhang , Lixia Zhang , Jing Zhang , Zhengwang Zhang
{"title":"Using non-destructive sampling to evaluate the population genomic status of captive Brown Eared Pheasants","authors":"Pengcheng Wang , Ping Hu , Jinping Zhang , Lixia Zhang , Jing Zhang , Zhengwang Zhang","doi":"10.1016/j.avrs.2023.100078","DOIUrl":null,"url":null,"abstract":"<div><p>Evaluating the genetic status of threatened species is an essential task in conservation genetics. However, the genetic status of threatened species has been mostly evaluated through techniques that fail to estimate genetic diversity at the whole genomic level. Next generation sequencing can meet this demand, but high quality samples such as blood or muscle tissues are required. However, it is difficult to collect such samples from threatened species because sampling work may impact their health. Therefore, it is essential to design a workflow to evaluate the whole genomic status of threatened species using non-destructive sampling. Even though non-destructive sampling has been used in traditional barcoding technique, the barcoding technique cannot evaluate the whole genomic status. Brown Eared Pheasant (<em>Crossoptilon mantchuricum</em>) is an endangered species, with captive populations maintained in Taiyuan Zoo, China, and Europe. However, the genetic diversity, inbreeding pattern, and mutation load of these two populations are unclear. To uncover the genetic status of these two captive populations, we applied 2b-RAD technology to evaluate the genomic status of these populations using feathers as samples. The feathers could be collected by non-destructive sampling. The results indicate that the Taiyuan Zoo population has a lower genetic diversity and higher inbreeding coefficient than the European population. The Taiyuan Zoo population has lethal mutations when homozygous. The current project uses a non-destructive sampling technique to evaluate the whole genomic status of the two captive populations, providing a paradigm for conservation genetics, which will facilitate the development of conservation biology.</p></div>","PeriodicalId":51311,"journal":{"name":"Avian Research","volume":"14 ","pages":"Article 100078"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S205371662300004X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating the genetic status of threatened species is an essential task in conservation genetics. However, the genetic status of threatened species has been mostly evaluated through techniques that fail to estimate genetic diversity at the whole genomic level. Next generation sequencing can meet this demand, but high quality samples such as blood or muscle tissues are required. However, it is difficult to collect such samples from threatened species because sampling work may impact their health. Therefore, it is essential to design a workflow to evaluate the whole genomic status of threatened species using non-destructive sampling. Even though non-destructive sampling has been used in traditional barcoding technique, the barcoding technique cannot evaluate the whole genomic status. Brown Eared Pheasant (Crossoptilon mantchuricum) is an endangered species, with captive populations maintained in Taiyuan Zoo, China, and Europe. However, the genetic diversity, inbreeding pattern, and mutation load of these two populations are unclear. To uncover the genetic status of these two captive populations, we applied 2b-RAD technology to evaluate the genomic status of these populations using feathers as samples. The feathers could be collected by non-destructive sampling. The results indicate that the Taiyuan Zoo population has a lower genetic diversity and higher inbreeding coefficient than the European population. The Taiyuan Zoo population has lethal mutations when homozygous. The current project uses a non-destructive sampling technique to evaluate the whole genomic status of the two captive populations, providing a paradigm for conservation genetics, which will facilitate the development of conservation biology.
期刊介绍:
Avian Research is an open access, peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world. It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists. As an open access journal, Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.