Rota–Baxter Operators on Unital Algebras

V. Gubarev
{"title":"Rota–Baxter Operators on Unital Algebras","authors":"V. Gubarev","doi":"10.17323/1609-4514-2021-21-2-325-364","DOIUrl":null,"url":null,"abstract":"We state that all Rota---Baxter operators of nonzero weight on Grassmann algebra over a field of characteristic zero are projections on a subalgebra along another one. We show the one-to-one correspondence between the solutions of associative Yang---Baxter equation and Rota---Baxter operators of weight zero on the matrix algebra $M_n(F)$ (joint with P. Kolesnikov). \nWe prove that all Rota---Baxter operators of weight zero on a unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero are nilpotent. For an algebra $A$, we introduce its new invariant the rb-index $\\mathrm{rb}(A)$ as the nilpotency index for Rota---Baxter operators of weight zero on $A$. We show that $2n-1\\leq \\mathrm{rb}(M_n(F))\\leq 2n$ provided that characteristic of $F$ is zero.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-2-325-364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We state that all Rota---Baxter operators of nonzero weight on Grassmann algebra over a field of characteristic zero are projections on a subalgebra along another one. We show the one-to-one correspondence between the solutions of associative Yang---Baxter equation and Rota---Baxter operators of weight zero on the matrix algebra $M_n(F)$ (joint with P. Kolesnikov). We prove that all Rota---Baxter operators of weight zero on a unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero are nilpotent. For an algebra $A$, we introduce its new invariant the rb-index $\mathrm{rb}(A)$ as the nilpotency index for Rota---Baxter operators of weight zero on $A$. We show that $2n-1\leq \mathrm{rb}(M_n(F))\leq 2n$ provided that characteristic of $F$ is zero.
分享
查看原文
一元代数上的Rota-Baxter算子
我们声明在特征为零的域上,所有在Grassmann代数上权值为非零的Rota—Baxter算子都是沿另一子代数上的投影。我们在矩阵代数$M_n(F)$(与P. Kolesnikov联合)上证明了结合式Yang—Baxter方程的解与权值为零的Rota—Baxter算子的一一对应关系。证明了特征为0的域上的一元结合代数(可选,Jordan)上权为0的Rota—Baxter算子是幂零的。对于一个代数$A$,我们引入了它的新的不变量rb-指标$\mathrm{rb}(A)$作为$A$上权为零的Rota—Baxter算子的幂零指标。假设$F$的特性为零,我们证明$2n-1\leq \mathrm{rb}(M_n(F))\leq 2n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信