{"title":"Rota–Baxter Operators on Unital Algebras","authors":"V. Gubarev","doi":"10.17323/1609-4514-2021-21-2-325-364","DOIUrl":null,"url":null,"abstract":"We state that all Rota---Baxter operators of nonzero weight on Grassmann algebra over a field of characteristic zero are projections on a subalgebra along another one. We show the one-to-one correspondence between the solutions of associative Yang---Baxter equation and Rota---Baxter operators of weight zero on the matrix algebra $M_n(F)$ (joint with P. Kolesnikov). \nWe prove that all Rota---Baxter operators of weight zero on a unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero are nilpotent. For an algebra $A$, we introduce its new invariant the rb-index $\\mathrm{rb}(A)$ as the nilpotency index for Rota---Baxter operators of weight zero on $A$. We show that $2n-1\\leq \\mathrm{rb}(M_n(F))\\leq 2n$ provided that characteristic of $F$ is zero.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-2-325-364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14
Abstract
We state that all Rota---Baxter operators of nonzero weight on Grassmann algebra over a field of characteristic zero are projections on a subalgebra along another one. We show the one-to-one correspondence between the solutions of associative Yang---Baxter equation and Rota---Baxter operators of weight zero on the matrix algebra $M_n(F)$ (joint with P. Kolesnikov).
We prove that all Rota---Baxter operators of weight zero on a unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero are nilpotent. For an algebra $A$, we introduce its new invariant the rb-index $\mathrm{rb}(A)$ as the nilpotency index for Rota---Baxter operators of weight zero on $A$. We show that $2n-1\leq \mathrm{rb}(M_n(F))\leq 2n$ provided that characteristic of $F$ is zero.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.