A. Abbasi, Akbar Zaman, Searatul Arooj, M. Ijaz Khan, Sami Ullah Khan, Waseh Farooq, Taseer Muhammad
{"title":"A bioconvection model for viscoelastic nanofluid confined by tapered asymmetric channel: implicit finite difference simulations","authors":"A. Abbasi, Akbar Zaman, Searatul Arooj, M. Ijaz Khan, Sami Ullah Khan, Waseh Farooq, Taseer Muhammad","doi":"10.1007/s10867-021-09585-6","DOIUrl":null,"url":null,"abstract":"<div><p>As part of the growing evolution in nanotechnology and thermal sciences, nanoparticles are considered as an alternative solution for the energy depletion due to their ultra-high thermal effectives. Nanofluids reflect inclusive and broad-spectrum significances in engineering, industrial and bio-engineering like power plants, energy source, air conditioning systems, surface coatings, evaporators, power consumptions, nano-medicine, cancer treatment, etc. The present study describes the bio-convective peristaltic flow of a third-grade nanofluid in a tapered asymmetric channel. Basic conservation laws of mass, momentum, energy, and concentration as well as the microorganism diffusion equation are utilized to model the problem. The simplified form of the modeled expressions is accounted with long wavelength assumptions. For solving the resulting coupled and nonlinear equations, a well-known numerical method implicit finite difference scheme has been utilized. The graphical results describe the velocity, temperature and concentration profiles, and the density of motile microorganisms at the nanoscale. Furthermore, microorganism concentration lines are analyzed.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09585-6.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09585-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
As part of the growing evolution in nanotechnology and thermal sciences, nanoparticles are considered as an alternative solution for the energy depletion due to their ultra-high thermal effectives. Nanofluids reflect inclusive and broad-spectrum significances in engineering, industrial and bio-engineering like power plants, energy source, air conditioning systems, surface coatings, evaporators, power consumptions, nano-medicine, cancer treatment, etc. The present study describes the bio-convective peristaltic flow of a third-grade nanofluid in a tapered asymmetric channel. Basic conservation laws of mass, momentum, energy, and concentration as well as the microorganism diffusion equation are utilized to model the problem. The simplified form of the modeled expressions is accounted with long wavelength assumptions. For solving the resulting coupled and nonlinear equations, a well-known numerical method implicit finite difference scheme has been utilized. The graphical results describe the velocity, temperature and concentration profiles, and the density of motile microorganisms at the nanoscale. Furthermore, microorganism concentration lines are analyzed.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.