{"title":"Moisture sources of summer heavy precipitation in two spatial patterns over Northeast China during 1979–2021","authors":"Shibo Yao, Xianmei Lang, Dong Si, Zhiping Tian","doi":"10.1002/asl.1181","DOIUrl":null,"url":null,"abstract":"<p>This study classifies the spatial distribution of heavy precipitation in summer (June–August) from 1979 to 2021 in the three provinces of Northeast China (TPNC) into two patterns by using the self-organizing maps (SOM) neural network, and then quantitatively analyzes their moisture transport channels and sources using the Lagrangian model. The results show that the summer heavy precipitation in TPNC can be divided into the northern and southern patterns according to the distribution of the heavy precipitation. Both patterns of heavy precipitation are affected by the low-level vortex west of TPNC, but the strength and shape of the low vortex are different. The northern pattern is mainly influenced by the westerly flow in the vortex in the mid-high latitudes, which transports moisture from the upstream westerly region into TPNC. The southern pattern is mainly affected by the southerly jet stream southeast of TPNC, which conveys a large amount of moisture from the East Asian summer monsoon region into TPNC. In terms of the summer climatological mean, the northern pattern has a higher precipitation recycling rate, while the southern pattern has a lower recycling rate.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"24 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1181","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study classifies the spatial distribution of heavy precipitation in summer (June–August) from 1979 to 2021 in the three provinces of Northeast China (TPNC) into two patterns by using the self-organizing maps (SOM) neural network, and then quantitatively analyzes their moisture transport channels and sources using the Lagrangian model. The results show that the summer heavy precipitation in TPNC can be divided into the northern and southern patterns according to the distribution of the heavy precipitation. Both patterns of heavy precipitation are affected by the low-level vortex west of TPNC, but the strength and shape of the low vortex are different. The northern pattern is mainly influenced by the westerly flow in the vortex in the mid-high latitudes, which transports moisture from the upstream westerly region into TPNC. The southern pattern is mainly affected by the southerly jet stream southeast of TPNC, which conveys a large amount of moisture from the East Asian summer monsoon region into TPNC. In terms of the summer climatological mean, the northern pattern has a higher precipitation recycling rate, while the southern pattern has a lower recycling rate.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.