Nano-sized Pt–NbOx supported on TiN as cost-effective electrocatalyst for oxygen reduction reaction

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. F. Daudt, A. Poozhikunnath, H. Yu, L. Bonville, R. Maric
{"title":"Nano-sized Pt–NbOx supported on TiN as cost-effective electrocatalyst for oxygen reduction reaction","authors":"N. F. Daudt,&nbsp;A. Poozhikunnath,&nbsp;H. Yu,&nbsp;L. Bonville,&nbsp;R. Maric","doi":"10.1007/s40243-020-00179-1","DOIUrl":null,"url":null,"abstract":"<p>Proton exchange membrane fuel cells (PEMFC) play a key role for sustainable energy; however, catalyst degradation remains one of the main challenges for competing with traditional energy technologies. The Pt/C commercially available electrocatalysts are susceptible to Pt dissolution and carbon support corrosion. In this context, we design a Pt–NbO<sub><i>x</i></sub> catalyst supported on TiN nanoparticles as an alternative electrocatalyst for the oxygen reduction reaction (ORR). The use of Pt–NbO<sub><i>x</i></sub> reduces materials’ costs by lowering the required platinum loading and improving catalyst performance. The TiN support is selected to improve support stability. The electrocatalyst is successfully synthesized by a one-step flame spray process called reactive spray deposition technology. Electrocatalyst with two different very low Pt loadings (0.032?mg?cm<sup>?2</sup> and 0.077?mg?cm<sup>?2</sup>) are investigated and their performance as cathode is evaluated by the rotating disk electrode method. The new electrocatalyst based on Pt–NbO<sub><i>x</i></sub> supported on TiN has ORR performance that is comparable to the state-of-the-art Pt/C electrocatalyst. A half-wave potential of 910?mV was observed in the polarization curves, as well as a mass activity of 0.120 A?mg<sub>Pt</sub><sup>?1</sup> and a specific activity of 283 μA?cm<sub>Pt</sub><sup>?2</sup> at 0.9?V. These results demonstrate that Pt–NbO<sub><i>x</i></sub> on TiN electrocatalyst has the potential for replacing Pt/C cathode in PEMFC.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"9 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-020-00179-1","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-020-00179-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Proton exchange membrane fuel cells (PEMFC) play a key role for sustainable energy; however, catalyst degradation remains one of the main challenges for competing with traditional energy technologies. The Pt/C commercially available electrocatalysts are susceptible to Pt dissolution and carbon support corrosion. In this context, we design a Pt–NbOx catalyst supported on TiN nanoparticles as an alternative electrocatalyst for the oxygen reduction reaction (ORR). The use of Pt–NbOx reduces materials’ costs by lowering the required platinum loading and improving catalyst performance. The TiN support is selected to improve support stability. The electrocatalyst is successfully synthesized by a one-step flame spray process called reactive spray deposition technology. Electrocatalyst with two different very low Pt loadings (0.032?mg?cm?2 and 0.077?mg?cm?2) are investigated and their performance as cathode is evaluated by the rotating disk electrode method. The new electrocatalyst based on Pt–NbOx supported on TiN has ORR performance that is comparable to the state-of-the-art Pt/C electrocatalyst. A half-wave potential of 910?mV was observed in the polarization curves, as well as a mass activity of 0.120 A?mgPt?1 and a specific activity of 283 μA?cmPt?2 at 0.9?V. These results demonstrate that Pt–NbOx on TiN electrocatalyst has the potential for replacing Pt/C cathode in PEMFC.

Abstract Image

负载在TiN上的纳米Pt-NbOx作为低成本的氧还原反应电催化剂
质子交换膜燃料电池(PEMFC)在可持续能源中发挥着关键作用;然而,催化剂降解仍然是与传统能源技术竞争的主要挑战之一。市售Pt/C电催化剂易受Pt溶解和碳载体腐蚀。在这种情况下,我们设计了一种负载在TiN纳米颗粒上的Pt-NbOx催化剂,作为氧还原反应(ORR)的替代电催化剂。Pt-NbOx的使用通过降低所需的铂负载和提高催化剂性能来降低材料成本。为了提高支撑稳定性,选择TiN支撑。该电催化剂是通过一步火焰喷涂工艺成功合成的,称为反应喷涂沉积技术。两种不同极低铂负载的电催化剂(0.032 mg?cm?研究了0.077 mg / cm / 2和0.077 mg / cm / 2),并用旋转圆盘电极法评价了它们作为阴极的性能。基于TiN支持的Pt - nbox的新型电催化剂具有与最先进的Pt/C电催化剂相当的ORR性能。半波电位910?在极化曲线上观察到mV,质量活动为0.120 a ?mgPt?1,比活性283 μA?2在0.9 V。这些结果表明,TiN电催化剂上的Pt - nbox具有替代PEMFC中Pt/C阴极的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信