Applying In-Situ Radiography to Study Porosity Formation in Aluminum Welds

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
A. Barraza, C. Cross, C. Stull, Jesse N Martinez, C. Fink
{"title":"Applying In-Situ Radiography to Study Porosity Formation in Aluminum Welds","authors":"A. Barraza, C. Cross, C. Stull, Jesse N Martinez, C. Fink","doi":"10.29391/2023.102.001","DOIUrl":null,"url":null,"abstract":"In-situ radiographic aluminum welding experiments were set up to observe the porosity formation and movement in aluminum weld pools. Aluminum Alloys 1100, 4047, and 6061 were autogenously gas tungsten arc welded while digitally recording radiograph images of macropores. Hydrogen was added in controlled parts per million through an argon-hydrogen shielding gas. The shielding gas hydrogen varied between 0 and 1000 parts per million of hydrogen, and three travel speeds were tested: 1.69, 2.54, and 3.39 mm/s. The transfer of hydrogen from the arc plasma to the weld pool was characterized using postweld gravimetric measurements to get the total pore volume and calculate weld metal hydrogen content. The amount of hydrogen added through the shielding gas played an important role in macropore volume and growth rate. Welding travel speed likewise played a critical role in hydrogen pickup. Alloy 1100 macropores originated at the bottom of the weld pool and then migrated upward toward the rear of the pool. Macropores in Alloys 4047 and 6061 originated at the leading edge of the weld pool and then moved downward and toward the rear of the pool. It is hypothesized that this difference in behavior is related to Marangoni-controlled fluid flow in Alloys 4047 and 6061.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2023.102.001","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ radiographic aluminum welding experiments were set up to observe the porosity formation and movement in aluminum weld pools. Aluminum Alloys 1100, 4047, and 6061 were autogenously gas tungsten arc welded while digitally recording radiograph images of macropores. Hydrogen was added in controlled parts per million through an argon-hydrogen shielding gas. The shielding gas hydrogen varied between 0 and 1000 parts per million of hydrogen, and three travel speeds were tested: 1.69, 2.54, and 3.39 mm/s. The transfer of hydrogen from the arc plasma to the weld pool was characterized using postweld gravimetric measurements to get the total pore volume and calculate weld metal hydrogen content. The amount of hydrogen added through the shielding gas played an important role in macropore volume and growth rate. Welding travel speed likewise played a critical role in hydrogen pickup. Alloy 1100 macropores originated at the bottom of the weld pool and then migrated upward toward the rear of the pool. Macropores in Alloys 4047 and 6061 originated at the leading edge of the weld pool and then moved downward and toward the rear of the pool. It is hypothesized that this difference in behavior is related to Marangoni-controlled fluid flow in Alloys 4047 and 6061.
应用原位射线照相技术研究铝焊缝气孔形成
建立了铝焊接现场射线照相实验,观察了铝焊接熔池中气孔的形成和运动。铝合金1100、4047和6061在数字记录大孔的射线照片图像的同时进行了钨极气体保护焊。通过氩气-氢气保护气体以百万分之可控的比例添加氢气。保护气体氢气在百万分之0到1000之间变化,测试了三种行进速度:1.69、2.54和3.39mm/s。使用焊后重量测量来表征氢从电弧等离子体到熔池的转移,以获得总孔隙体积并计算焊缝金属氢含量。通过保护气体添加的氢气量对大孔体积和生长速率起着重要作用。焊接行进速度同样在氢气吸收中起着关键作用。合金1100大孔起源于熔池的底部,然后向上向熔池的后部迁移。合金4047和6061中的大孔起源于熔池的前缘,然后向下并朝向熔池的后部移动。据推测,这种行为差异与合金4047和6061中Marangoni控制的流体流动有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信