{"title":"Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential","authors":"K. Anukiruthika, N. Durga, P. Muthukumar","doi":"10.1515/ijnsns-2021-0321","DOIUrl":null,"url":null,"abstract":"Abstract The optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential and mixed fractional Brownian motion is investigated in this article. The deterministic nonlinear second-order controlled partial differential system is enriched with stochastic perturbations, non-instantaneous impulses, and Clarke subdifferential. In particular, the nonlinearities in the system that rely on the state of the solution are allowed to rely on the corresponding probability distribution of the state. The solvability of the considered system is discussed with the help of stochastic analysis, multivalued analysis, and multivalued fixed point theorem. Further, the existence of optimal control is established with the aid of Balder’s theorem. Finally, an example is provided to illustrate the developed theory.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0321","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential and mixed fractional Brownian motion is investigated in this article. The deterministic nonlinear second-order controlled partial differential system is enriched with stochastic perturbations, non-instantaneous impulses, and Clarke subdifferential. In particular, the nonlinearities in the system that rely on the state of the solution are allowed to rely on the corresponding probability distribution of the state. The solvability of the considered system is discussed with the help of stochastic analysis, multivalued analysis, and multivalued fixed point theorem. Further, the existence of optimal control is established with the aid of Balder’s theorem. Finally, an example is provided to illustrate the developed theory.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.