{"title":"Fano fourfolds having a prime divisor of Picard number 1","authors":"S. A. Secci","doi":"10.1515/advgeom-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract We prove a classification result for smooth complex Fano fourfolds of Picard number 3 having a prime divisor of Picard number 1, after a characterisation result in arbitrary dimension by Casagrande and Druel [5]. These varieties are obtained by blowing-up a ℙ1-bundle over a smooth Fano variety of Picard number 1 along a codimension 2 subvariety. We study in detail the case of dimension 4, and show that they form 28 families. We compute the main numerical invariants, determine the base locus of the anticanonical system, and study their deformations to give an upper bound to the dimension of the base of the Kuranishi family of a general member.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We prove a classification result for smooth complex Fano fourfolds of Picard number 3 having a prime divisor of Picard number 1, after a characterisation result in arbitrary dimension by Casagrande and Druel [5]. These varieties are obtained by blowing-up a ℙ1-bundle over a smooth Fano variety of Picard number 1 along a codimension 2 subvariety. We study in detail the case of dimension 4, and show that they form 28 families. We compute the main numerical invariants, determine the base locus of the anticanonical system, and study their deformations to give an upper bound to the dimension of the base of the Kuranishi family of a general member.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.