Data-driven predictive modeling of FeCrAl oxidation

IF 2.2 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Indranil Roy, Subhrajit Roychowdhury, Bojun Feng, Sandipp Krishnan Ravi, Sayan Ghosh, Rajnikant Umretiya, Raul B. Rebak, Daniel M. Ruscitto, Vipul Gupta, Andrew Hoffman
{"title":"Data-driven predictive modeling of FeCrAl oxidation","authors":"Indranil Roy,&nbsp;Subhrajit Roychowdhury,&nbsp;Bojun Feng,&nbsp;Sandipp Krishnan Ravi,&nbsp;Sayan Ghosh,&nbsp;Rajnikant Umretiya,&nbsp;Raul B. Rebak,&nbsp;Daniel M. Ruscitto,&nbsp;Vipul Gupta,&nbsp;Andrew Hoffman","doi":"10.1016/j.mlblux.2023.100183","DOIUrl":null,"url":null,"abstract":"<div><p>FeCrAl alloys are among the most promising candidates for accident-tolerant fuel cladding material in light water nuclear reactors. Despite their high-temperature oxidation resistance in corrosive environments coupled with their hydrothermal corrosion resistance, a key challenge remains in optimizing the composition of the alloy that can be achieved through statistical analysis. However, the current literature on FeCrAl alloy design lack studies for designing alloys based on oxidation resistance. This study addresses that gap by developing a predictive model for the oxidation of FeCrAl alloys based on an experimental dataset, which lays the groundwork for model-based optimization for alloy composition.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"17 ","pages":"Article 100183"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150823000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

FeCrAl alloys are among the most promising candidates for accident-tolerant fuel cladding material in light water nuclear reactors. Despite their high-temperature oxidation resistance in corrosive environments coupled with their hydrothermal corrosion resistance, a key challenge remains in optimizing the composition of the alloy that can be achieved through statistical analysis. However, the current literature on FeCrAl alloy design lack studies for designing alloys based on oxidation resistance. This study addresses that gap by developing a predictive model for the oxidation of FeCrAl alloys based on an experimental dataset, which lays the groundwork for model-based optimization for alloy composition.

数据驱动的FeCrAl氧化预测建模
铁铁合金是轻水反应堆耐事故燃料包壳材料中最有前途的候选材料之一。尽管它们在腐蚀环境中具有高温抗氧化性和水热腐蚀性,但一个关键的挑战仍然是通过统计分析来优化合金的成分。然而,目前关于铁铁合金设计的文献缺乏基于抗氧化设计合金的研究。本研究通过开发基于实验数据集的FeCrAl合金氧化预测模型来解决这一空白,这为基于模型的合金成分优化奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
50
审稿时长
114 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信