{"title":"The effects of Lepidopteran oral secretion on plant wounds: A case study on the interaction between Spodoptera litura and Arabidopsis thaliana.","authors":"Natsuko Kinoshita, S. Betsuyaku","doi":"10.5511/PLANTBIOTECHNOLOGY.18.0528A","DOIUrl":null,"url":null,"abstract":"This paper is about the cellular responses of plants to chewing insect attacks. We deployed a recently developed experimental system to monitor the responsiveness of Arabidopsis thaliana (Arabidopsis) to the application of oral secretion (OS) from Lepidopteran generalist herbivore Spodoptera litura (S. litura). Oral secretion from S. litura contains gut regurgitant and saliva. We identified significant differences in the wound closure morphologies (e.g., dried and sealed tissue) between mechanically damaged leaves with and without an application of S. litura OS at the site-of-injury. Experimental controls were mechanically wounded leaves. Wounds were walled off by visible vertical cross sections. Cell death was restricted to the immediate areas of the wounds. In contrast, mechanically damaged leaves treated with S. litura OS did not display a clear sealing pattern due to an absence of a defined vertical cross section at the wound site. Notably, OS treated leaves exhibited a wider area of visible premature senescence (the declining of chlorophyll content caused by death of chloroplasts) around the injury than controls. More pronounced senescence was also observed around the injury in S. litura OS treated wounds than in controls. Heat inactivated S. litura OS elicited a similar response to non-heat inactivated samples. The causal compound is heat stable and thus not a protein. Our results suggest that S. litura OS: (1) inhibited wound recovery responses in leaves; (2) promoted senescence around injured areas. The function of senescence may be to relocate nutritional resources to support plant survival when attacked.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"35 3 1","pages":"237-242"},"PeriodicalIF":1.4000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5511/PLANTBIOTECHNOLOGY.18.0528A","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/PLANTBIOTECHNOLOGY.18.0528A","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
This paper is about the cellular responses of plants to chewing insect attacks. We deployed a recently developed experimental system to monitor the responsiveness of Arabidopsis thaliana (Arabidopsis) to the application of oral secretion (OS) from Lepidopteran generalist herbivore Spodoptera litura (S. litura). Oral secretion from S. litura contains gut regurgitant and saliva. We identified significant differences in the wound closure morphologies (e.g., dried and sealed tissue) between mechanically damaged leaves with and without an application of S. litura OS at the site-of-injury. Experimental controls were mechanically wounded leaves. Wounds were walled off by visible vertical cross sections. Cell death was restricted to the immediate areas of the wounds. In contrast, mechanically damaged leaves treated with S. litura OS did not display a clear sealing pattern due to an absence of a defined vertical cross section at the wound site. Notably, OS treated leaves exhibited a wider area of visible premature senescence (the declining of chlorophyll content caused by death of chloroplasts) around the injury than controls. More pronounced senescence was also observed around the injury in S. litura OS treated wounds than in controls. Heat inactivated S. litura OS elicited a similar response to non-heat inactivated samples. The causal compound is heat stable and thus not a protein. Our results suggest that S. litura OS: (1) inhibited wound recovery responses in leaves; (2) promoted senescence around injured areas. The function of senescence may be to relocate nutritional resources to support plant survival when attacked.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.