{"title":"Constructing mental diagrams during problem-solving in mathematics","authors":"Vimolan Mudaly","doi":"10.4102/pythagoras.v42i1.633","DOIUrl":null,"url":null,"abstract":"In mathematics, problem-solving can be considered to be one of the most important skills students need to develop, because it allows them to deal with increasingly intricate mathematical and real-life issues. Often, teachers attempt to try to link a problem with a drawn diagram or picture. Despite these diagrams, whether given or constructed, the student still individually engages in a private discourse about the problem and its solution. These discourses are strongly influenced by their a priori knowledge and the given information in the problem itself. This article explores first-year pre-service teachers’ mental problem-solving skills. The emphasis was not on whether they solved the problems, but rather on their natural instincts during the problem-solving process. The research shows that some students were naturally drawn to construct mental images during the problem-solving process while others were content to simply leave the question blank. The data were collected from 35 first-year volunteer students attending a second semester geometry module. The data were collected using task sheets on Google Forms and interviews, which were based on responses to the questions. An interpretive qualitative analysis was conducted in order to produce deeper meaning (insight). The findings point to the fact that teachers could try to influence how students think during the problem-solving process by encouraging them to engage with mental images.","PeriodicalId":43521,"journal":{"name":"Pythagoras","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pythagoras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4102/pythagoras.v42i1.633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 2
Abstract
In mathematics, problem-solving can be considered to be one of the most important skills students need to develop, because it allows them to deal with increasingly intricate mathematical and real-life issues. Often, teachers attempt to try to link a problem with a drawn diagram or picture. Despite these diagrams, whether given or constructed, the student still individually engages in a private discourse about the problem and its solution. These discourses are strongly influenced by their a priori knowledge and the given information in the problem itself. This article explores first-year pre-service teachers’ mental problem-solving skills. The emphasis was not on whether they solved the problems, but rather on their natural instincts during the problem-solving process. The research shows that some students were naturally drawn to construct mental images during the problem-solving process while others were content to simply leave the question blank. The data were collected from 35 first-year volunteer students attending a second semester geometry module. The data were collected using task sheets on Google Forms and interviews, which were based on responses to the questions. An interpretive qualitative analysis was conducted in order to produce deeper meaning (insight). The findings point to the fact that teachers could try to influence how students think during the problem-solving process by encouraging them to engage with mental images.
期刊介绍:
Pythagoras is a scholarly research journal that provides a forum for the presentation and critical discussion of current research and developments in mathematics education at both national and international level. Pythagoras publishes articles that significantly contribute to our understanding of mathematics teaching, learning and curriculum studies, including reports of research (experiments, case studies, surveys, philosophical and historical studies, etc.), critical analyses of school mathematics curricular and teacher development initiatives, literature reviews, theoretical analyses, exposition of mathematical thinking (mathematical practices) and commentaries on issues relating to the teaching and learning of mathematics at all levels of education.