{"title":"Well-Distributed Polysilsesquioxane-Modified Carbon Nanotubes for Thermal Conductive Insulating Silicone Rubbers","authors":"L. Han, Zhaobo Wang, Jing Hua, Jieting Geng","doi":"10.1155/2022/9115873","DOIUrl":null,"url":null,"abstract":"Despite carbon nanotubes (CNTs) have garnered tremendous research interests for enhancing the electrical and thermal conductivity of polymers, it is still a considerable challenge to achieve the uniform dispersion of carbon nanotubes in polymer matrix. Herein, inspired by the mussel-inspired chemistry, we adopted the strategy of coating CNTs with polydopamine. And the polysilsesquioxane-modified CNTs (CNTs-PSQ) were obtained based on the click chemistry reaction. The FT-IR, Raman, XRD, and TGA collectively demonstrated the successful modification of PSQ on the surface of CNTs. The incorporation of PSQ could significantly improve the dispersion of CNTs in the silicon rubbers, and a strong interfacial interaction was formed between CNTs-PSQ and silicon rubber matrix, as observed from TEM images of silicon rubber/CNTs-PSQ nanocomposites. Meanwhile, compared with the nanocomposites with neat CNTs, the ones with CNTs-PSQ exhibited simultaneously improved electrical conductivity and insulating performance. This strategy proposed for the preparation of PSQ-modified CNTs provides insights toward highly insulating and thermal conducting polymers.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/9115873","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Despite carbon nanotubes (CNTs) have garnered tremendous research interests for enhancing the electrical and thermal conductivity of polymers, it is still a considerable challenge to achieve the uniform dispersion of carbon nanotubes in polymer matrix. Herein, inspired by the mussel-inspired chemistry, we adopted the strategy of coating CNTs with polydopamine. And the polysilsesquioxane-modified CNTs (CNTs-PSQ) were obtained based on the click chemistry reaction. The FT-IR, Raman, XRD, and TGA collectively demonstrated the successful modification of PSQ on the surface of CNTs. The incorporation of PSQ could significantly improve the dispersion of CNTs in the silicon rubbers, and a strong interfacial interaction was formed between CNTs-PSQ and silicon rubber matrix, as observed from TEM images of silicon rubber/CNTs-PSQ nanocomposites. Meanwhile, compared with the nanocomposites with neat CNTs, the ones with CNTs-PSQ exhibited simultaneously improved electrical conductivity and insulating performance. This strategy proposed for the preparation of PSQ-modified CNTs provides insights toward highly insulating and thermal conducting polymers.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.