Valorisation of alum sludge to produce green and durable mortar

Qiong Jia, Yan Zhuge, Weiwei Duan, Yue Liu, Jing Yang, Osama Youssf, Jinsuo Lu
{"title":"Valorisation of alum sludge to produce green and durable mortar","authors":"Qiong Jia,&nbsp;Yan Zhuge,&nbsp;Weiwei Duan,&nbsp;Yue Liu,&nbsp;Jing Yang,&nbsp;Osama Youssf,&nbsp;Jinsuo Lu","doi":"10.1007/s42768-022-00113-3","DOIUrl":null,"url":null,"abstract":"<div><p>Alum sludge is a typical by-product of drinking water treatment processes. Most sludge is disposed of at landfill sites, and such a disposal method may cause significant environmental concern due to its vast amount. This paper assessed the feasibility of reusing sludge as a supplementary cementitious material, which could efficiently exhaust stockpiled sludge. Specifically, the pozzolanic reactivity of sludge at different temperatures, the reaction mechanism of the sludge–cement binder, and the resistance of sludge-derived mortar to microbially induced corrosion were investigated. The obtained results indicated that 800 °C was the optimal calcination temperature for sludge. Mortar containing sludge up to 30% by weight showed comparable physical properties at a curing age of 90 days. Mortar with 10% cement replaced by sludge can significantly improve the resistance to biogenic corrosion due to the formation of Al-bearing phases with high resistance to acidic media, e.g., Ca<sub>4</sub>Al<sub>2</sub>O<sub>7</sub>·xH<sub>2</sub>O and strätlingite.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"4 4","pages":"283 - 295"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-022-00113-3.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00113-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Alum sludge is a typical by-product of drinking water treatment processes. Most sludge is disposed of at landfill sites, and such a disposal method may cause significant environmental concern due to its vast amount. This paper assessed the feasibility of reusing sludge as a supplementary cementitious material, which could efficiently exhaust stockpiled sludge. Specifically, the pozzolanic reactivity of sludge at different temperatures, the reaction mechanism of the sludge–cement binder, and the resistance of sludge-derived mortar to microbially induced corrosion were investigated. The obtained results indicated that 800 °C was the optimal calcination temperature for sludge. Mortar containing sludge up to 30% by weight showed comparable physical properties at a curing age of 90 days. Mortar with 10% cement replaced by sludge can significantly improve the resistance to biogenic corrosion due to the formation of Al-bearing phases with high resistance to acidic media, e.g., Ca4Al2O7·xH2O and strätlingite.

Graphical abstract

Abstract Image

明矾污泥的增值生产绿色耐用砂浆
明矾污泥是饮用水处理过程中的典型副产物。大部分污泥是在堆填区弃置,而这种弃置方法由于其数量庞大,可能会引起严重的环境问题。本文评价了污泥作为补充胶凝材料回用的可行性,该材料可以有效地排除库存污泥。具体而言,研究了污泥在不同温度下的火山灰反应性、污泥-水泥粘结剂的反应机理以及污泥砂浆的抗微生物腐蚀性能。结果表明,污泥的最佳焙烧温度为800℃。含有污泥重量30%的砂浆在养护90天时表现出类似的物理性能。以污泥替代10%水泥的砂浆,由于形成了对Ca4Al2O7·xH2O、strätlingite等酸性介质具有较高耐腐蚀性的含al相,可显著提高砂浆的抗生物腐蚀能力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信