{"title":"Influence of leading edge point on aerodynamic performance of asymmetric leading edge compressor airfoils","authors":"Guanhua Yang, Limin Gao, Haohao Wang, Longrui Chang","doi":"10.1515/tjj-2021-0054","DOIUrl":null,"url":null,"abstract":"Abstract Leading edge (LE) plays a prominent role in compressor flow. The asymmetric leading edge (ASYLE) has shown superiorities to symmetric LE in blade aerodynamic performance. However, the influencing rules of ASYLE design parameters are still ambiguous. In this work, numerical calculations were conducted to investigate the influencing effects of LE point curvature and position. The results show that the operating range of ASYLE blades expand with the decrease of LE point curvature, which helps to moderate LE flow acceleration, while the LE point position mainly affects the operating range. It is also revealed that the SSLE curvature peak is supposed to be close to LE point, and the maximum value of PSLE curvature should be restricted.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2021-0054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Leading edge (LE) plays a prominent role in compressor flow. The asymmetric leading edge (ASYLE) has shown superiorities to symmetric LE in blade aerodynamic performance. However, the influencing rules of ASYLE design parameters are still ambiguous. In this work, numerical calculations were conducted to investigate the influencing effects of LE point curvature and position. The results show that the operating range of ASYLE blades expand with the decrease of LE point curvature, which helps to moderate LE flow acceleration, while the LE point position mainly affects the operating range. It is also revealed that the SSLE curvature peak is supposed to be close to LE point, and the maximum value of PSLE curvature should be restricted.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.