Influence of leading edge point on aerodynamic performance of asymmetric leading edge compressor airfoils

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Guanhua Yang, Limin Gao, Haohao Wang, Longrui Chang
{"title":"Influence of leading edge point on aerodynamic performance of asymmetric leading edge compressor airfoils","authors":"Guanhua Yang, Limin Gao, Haohao Wang, Longrui Chang","doi":"10.1515/tjj-2021-0054","DOIUrl":null,"url":null,"abstract":"Abstract Leading edge (LE) plays a prominent role in compressor flow. The asymmetric leading edge (ASYLE) has shown superiorities to symmetric LE in blade aerodynamic performance. However, the influencing rules of ASYLE design parameters are still ambiguous. In this work, numerical calculations were conducted to investigate the influencing effects of LE point curvature and position. The results show that the operating range of ASYLE blades expand with the decrease of LE point curvature, which helps to moderate LE flow acceleration, while the LE point position mainly affects the operating range. It is also revealed that the SSLE curvature peak is supposed to be close to LE point, and the maximum value of PSLE curvature should be restricted.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2021-0054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Leading edge (LE) plays a prominent role in compressor flow. The asymmetric leading edge (ASYLE) has shown superiorities to symmetric LE in blade aerodynamic performance. However, the influencing rules of ASYLE design parameters are still ambiguous. In this work, numerical calculations were conducted to investigate the influencing effects of LE point curvature and position. The results show that the operating range of ASYLE blades expand with the decrease of LE point curvature, which helps to moderate LE flow acceleration, while the LE point position mainly affects the operating range. It is also revealed that the SSLE curvature peak is supposed to be close to LE point, and the maximum value of PSLE curvature should be restricted.
前缘点对非对称前缘压气机翼型气动性能的影响
摘要前缘在压气机流动中起着重要的作用。非对称前缘在叶片气动性能上优于对称前缘。然而,style设计参数的影响规律仍然不明确。本文通过数值计算研究了LE点曲率和位置的影响。结果表明:yle叶片的工作范围随着LE点曲率的减小而扩大,有助于调节LE流加速,而LE点位置主要影响工作范围;结果表明,单轴LE曲率峰值应接近LE点,并应限制单轴LE曲率最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信