{"title":"Variational optimality condition in control of hyperbolic systems with boundary delay parameters","authors":"A. Arguchintsev, V. Poplevko, A. Sinitsyn","doi":"10.35470/2226-4116-2022-11-2-61-66","DOIUrl":null,"url":null,"abstract":"An optimal control problem of a first-order hyperbolic system is studied, in which a boundary condition at one of the ends is determined from a controlled system of ordinary differential equations with constant state lag. Control functions are bounded and measurable functions. The system of ordinary differential equations at the boundary is linear in state. However the matrix of coefficients depends on control functions. Therefore, the optimality condition of Pontryagin’s maximum principle type in this problem is a necessary, but not a sufficient optimality condition. In this paper, the problem is reduced to an optimal control problem of a special system of ordinary differential equations. The proposed approach is based on the use of an exact formula of the cost functional increment. The reduced problem can be solved using a wide range of effective methods used for optimization problems in systems of ordinary differential equations. Problems of this kind arise when modeling thermal separation processes, suppression of mechanical\nvibrations in drilling, wave processes and population dynamics.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2022-11-2-61-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
An optimal control problem of a first-order hyperbolic system is studied, in which a boundary condition at one of the ends is determined from a controlled system of ordinary differential equations with constant state lag. Control functions are bounded and measurable functions. The system of ordinary differential equations at the boundary is linear in state. However the matrix of coefficients depends on control functions. Therefore, the optimality condition of Pontryagin’s maximum principle type in this problem is a necessary, but not a sufficient optimality condition. In this paper, the problem is reduced to an optimal control problem of a special system of ordinary differential equations. The proposed approach is based on the use of an exact formula of the cost functional increment. The reduced problem can be solved using a wide range of effective methods used for optimization problems in systems of ordinary differential equations. Problems of this kind arise when modeling thermal separation processes, suppression of mechanical
vibrations in drilling, wave processes and population dynamics.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.