{"title":"Challenges and limitation of wearable sensors used in firefighters’ protective clothing","authors":"F. Shakeriaski, M. Ghodrat","doi":"10.1177/07349041221079004","DOIUrl":null,"url":null,"abstract":"This review aims to present recent improvements and existing challenges in the design of wearable sensors used in the firefighters’ protective clothing. Wearable sensors are generally used directly on the body or placed on wearable items to monitor data for the safety of firefighters. Recently, wearable sensors have attracted much attention from researchers and experts. Most investigations have addressed novel designs for wearable sensors to enhance firefighters’ safety measures and reduce the risk of exposure to fires. This article is an attempt to review design limitations of wearable sensors for future developments and improve existing shortcomings. The growing body of knowledge focused on the application of wearable technology to monitor firefighters’ activity, health, and body temperature. In the following, we have discussed the trials of the design of the existing sensors. Finally, moisture and radiation as common exterior parameters in fire events are discussed which received less attention and have major impact on the performance of firefighters’ wearable sensors.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041221079004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
This review aims to present recent improvements and existing challenges in the design of wearable sensors used in the firefighters’ protective clothing. Wearable sensors are generally used directly on the body or placed on wearable items to monitor data for the safety of firefighters. Recently, wearable sensors have attracted much attention from researchers and experts. Most investigations have addressed novel designs for wearable sensors to enhance firefighters’ safety measures and reduce the risk of exposure to fires. This article is an attempt to review design limitations of wearable sensors for future developments and improve existing shortcomings. The growing body of knowledge focused on the application of wearable technology to monitor firefighters’ activity, health, and body temperature. In the following, we have discussed the trials of the design of the existing sensors. Finally, moisture and radiation as common exterior parameters in fire events are discussed which received less attention and have major impact on the performance of firefighters’ wearable sensors.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).