{"title":"Mathematical self-determination theory I: Real representation","authors":"Ali Ünlü","doi":"10.1016/j.jmp.2023.102792","DOIUrl":null,"url":null,"abstract":"<div><p><span>In two parts, MSDT1 this paper and MSDT2 the follow-up paper, we treat the topic of mathematical self-determination theory. MSDT1 considers the real representation, MSDT2 the affine space representation. The aim of the two papers is to lay the mathematical foundations of self-determination motivation theory. Self-determination theory was proposed by Deci and Ryan, which is a popular theory of motivation. The fundamental concepts are extrinsic and intrinsic motivation, amotivation, their type of regulation, locus of causality, and especially, self-determination. First, we give a geometric description of its concepts for the regulated case (no amotivation), as the unit 1-simplex. Thereby, we derive a symmetric definition of self-determination. Second, we extend the geometric description to the regulated and unregulated case, based on a more general ternary model, in internal motivation, external motivation, and amotivation. We define gradations of amotivation (and motivation), as 1-simplexes parallel to the unit 1-simplex. The ternary representation implies the types of strong, weak, and general self-determination, as partial orders on the motivation space. Third, we study the order, </span>lattice<span>, and algebraic properties of self-determination. In a version of polar coordinates, strong self-determination turns out to be a complete lattice<span> on angular line segments, weak self-determination is a complete lattice on radial line<span> segments, and general self-determination entails a complete lattice on the entire motivation space. In addition, the modified polar coordinates are employed to obtain necessary and sufficient conditions for strong, weak, and general self-determination. We propose measures for the strength of an ordinal dependency in self-determination, which are partial metrics on the motivation space.</span></span></span></p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"116 ","pages":"Article 102792"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000482","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
In two parts, MSDT1 this paper and MSDT2 the follow-up paper, we treat the topic of mathematical self-determination theory. MSDT1 considers the real representation, MSDT2 the affine space representation. The aim of the two papers is to lay the mathematical foundations of self-determination motivation theory. Self-determination theory was proposed by Deci and Ryan, which is a popular theory of motivation. The fundamental concepts are extrinsic and intrinsic motivation, amotivation, their type of regulation, locus of causality, and especially, self-determination. First, we give a geometric description of its concepts for the regulated case (no amotivation), as the unit 1-simplex. Thereby, we derive a symmetric definition of self-determination. Second, we extend the geometric description to the regulated and unregulated case, based on a more general ternary model, in internal motivation, external motivation, and amotivation. We define gradations of amotivation (and motivation), as 1-simplexes parallel to the unit 1-simplex. The ternary representation implies the types of strong, weak, and general self-determination, as partial orders on the motivation space. Third, we study the order, lattice, and algebraic properties of self-determination. In a version of polar coordinates, strong self-determination turns out to be a complete lattice on angular line segments, weak self-determination is a complete lattice on radial line segments, and general self-determination entails a complete lattice on the entire motivation space. In addition, the modified polar coordinates are employed to obtain necessary and sufficient conditions for strong, weak, and general self-determination. We propose measures for the strength of an ordinal dependency in self-determination, which are partial metrics on the motivation space.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory