{"title":"Research on the Knittability of Metallic Yarns in the Warp-knitted Mesh of a Deployable Antenna","authors":"Xu Haiyan, Chen Nanliang, Jiang Jinhua","doi":"10.2478/ftee-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract Metallic yarns are difficult to be knitted. To resolve the problem, the paper used the knitted yarn strength utilization factor to quantitatively characterize knittability, which was the ratio of yarn strength after being knitted to that of the original yarns. Furthermore, the relationship between the yarns' basic mechanical properties and the knitted yarn strength utilization factor was investigated by testing the yarns' basic mechanical properties. The results showed that it was feasible to quantitatively characterize the yarns' knittability using the knitted yarn strength utilization factor. And also the breaking strength of yarn was not correlated with the knittability. The elongation at break of the yarn was positively correlated with knittability. The bending stiffness of the yarn was negatively correlated with the knittability. Finally, a multiple linear regression model of the knittability and the mechanical properties of the yarn was developed. The model showed that there was a significant linear relationship between knittability and the elongation of yarns at break and the bending rigidity of yarns, with the bending stiffness of yarns being more significant.","PeriodicalId":12309,"journal":{"name":"Fibres & Textiles in Eastern Europe","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibres & Textiles in Eastern Europe","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/ftee-2023-0015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Metallic yarns are difficult to be knitted. To resolve the problem, the paper used the knitted yarn strength utilization factor to quantitatively characterize knittability, which was the ratio of yarn strength after being knitted to that of the original yarns. Furthermore, the relationship between the yarns' basic mechanical properties and the knitted yarn strength utilization factor was investigated by testing the yarns' basic mechanical properties. The results showed that it was feasible to quantitatively characterize the yarns' knittability using the knitted yarn strength utilization factor. And also the breaking strength of yarn was not correlated with the knittability. The elongation at break of the yarn was positively correlated with knittability. The bending stiffness of the yarn was negatively correlated with the knittability. Finally, a multiple linear regression model of the knittability and the mechanical properties of the yarn was developed. The model showed that there was a significant linear relationship between knittability and the elongation of yarns at break and the bending rigidity of yarns, with the bending stiffness of yarns being more significant.
期刊介绍:
FIBRES & TEXTILES in Eastern Europe is a peer reviewed bimonthly scientific journal devoted to current problems of fibre, textile and fibrous products’ science as well as general economic problems of textile industry worldwide. The content of the journal is available online as free open access.
FIBRES & TEXTILES in Eastern Europe constitutes a forum for the exchange of information and the establishment of mutual contact for cooperation between scientific centres, as well as between science and industry.