Two S-wave eigenvectors of the Christoffel matrix need not exist in anisotropic viscoelastic media

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Luděk Klimeš
{"title":"Two S-wave eigenvectors of the Christoffel matrix need not exist in anisotropic viscoelastic media","authors":"Luděk Klimeš","doi":"10.1007/s11200-021-0824-z","DOIUrl":null,"url":null,"abstract":"<div><p>The 3×3×3×3 frequency-domain stiffness tensor is complex-valued in viscoelastic media. The 3 × 3 Christoffel matrix is then also complex-valued. Using a simple example, we demonstrate that a complex-valued Christoffel matrix need not have all three eigenvectors at an S-wave singularity, and we thus cannot apply the eigenvectors to calculating the phase-space derivatives of the Hamiltonian function.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"65 3-4","pages":"291 - 295"},"PeriodicalIF":0.5000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-021-0824-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

The 3×3×3×3 frequency-domain stiffness tensor is complex-valued in viscoelastic media. The 3 × 3 Christoffel matrix is then also complex-valued. Using a simple example, we demonstrate that a complex-valued Christoffel matrix need not have all three eigenvectors at an S-wave singularity, and we thus cannot apply the eigenvectors to calculating the phase-space derivatives of the Hamiltonian function.

在各向异性粘弹性介质中,克里斯托费尔矩阵的两个s波特征向量不需要存在
黏弹性介质中3×3×3×3频域刚度张量是复值的。3 × 3克里斯托费尔矩阵也是复值的。通过一个简单的例子,我们证明了复值克里斯托费尔矩阵在s波奇点处不需要具有所有三个特征向量,因此我们不能将特征向量应用于计算哈密顿函数的相空间导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信