Comparison Of The Electricity Generation Potentials Of Solar ORC Designed With Different Fluids Depending On Instantaneous Solar Radiation In Four Districts Of Türkiye

IF 0.9 Q4 THERMODYNAMICS
Serhat Yildirim, Sadık Ata, Huseyin Kurt, A. Kahraman
{"title":"Comparison Of The Electricity Generation Potentials Of Solar ORC Designed With Different Fluids Depending On Instantaneous Solar Radiation In Four Districts Of Türkiye","authors":"Serhat Yildirim, Sadık Ata, Huseyin Kurt, A. Kahraman","doi":"10.5541/ijot.1250652","DOIUrl":null,"url":null,"abstract":"In this study, the solar Organic Rankine Cycle (ORC) system was analyzed to meet some of the electrical energy needed in large and medium-sized buildings and large enterprises such as hotels from solar energy. A simulation study was conducted for different districts in Türkiye that are rich in solar energy potential. These counties and the provinces they are affiliated with; Silifke-İçel, Alanya-Antalya, Bodrum-Muğla, Çeşme-İzmir. The power value transferred to the ORC was determined by considering the instantaneous radiation values and sunshine durations for the districts. The performance of solar ORC was determined by comparing fluids from three different organic fluid types. Organic fluids and types used in design; benzene-aromatic hydrocarbon, cyclohexane-alkane, octamethylcyclotetrasiloxane (D4)-siloxane. Considering the maximum electrical energy values obtained from Solar ORC in the summer months, it was seen that 205 MWh electricity generated was obtained for Silifke with benzene at a heat source temperature of 223 oC in July. Maximum solar parabolic trough collector (PTC) specific electric power value was determined as 59.52 W/m2 in Alanya district with benzene in June. When the four districts are evaluated together, it has been determined that benzene performs better than cyclohexane by 3.8% on average and 23% better than D4. When the annual electrical energy values are examined, the highest production was determined as 1625 MWh with benzene fluid in Alanya district.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1250652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the solar Organic Rankine Cycle (ORC) system was analyzed to meet some of the electrical energy needed in large and medium-sized buildings and large enterprises such as hotels from solar energy. A simulation study was conducted for different districts in Türkiye that are rich in solar energy potential. These counties and the provinces they are affiliated with; Silifke-İçel, Alanya-Antalya, Bodrum-Muğla, Çeşme-İzmir. The power value transferred to the ORC was determined by considering the instantaneous radiation values and sunshine durations for the districts. The performance of solar ORC was determined by comparing fluids from three different organic fluid types. Organic fluids and types used in design; benzene-aromatic hydrocarbon, cyclohexane-alkane, octamethylcyclotetrasiloxane (D4)-siloxane. Considering the maximum electrical energy values obtained from Solar ORC in the summer months, it was seen that 205 MWh electricity generated was obtained for Silifke with benzene at a heat source temperature of 223 oC in July. Maximum solar parabolic trough collector (PTC) specific electric power value was determined as 59.52 W/m2 in Alanya district with benzene in June. When the four districts are evaluated together, it has been determined that benzene performs better than cyclohexane by 3.8% on average and 23% better than D4. When the annual electrical energy values are examined, the highest production was determined as 1625 MWh with benzene fluid in Alanya district.
土耳其四个地区基于瞬时太阳辐射的不同流体设计的太阳能ORC发电潜力的比较
本研究分析了太阳能有机朗肯循环(ORC)系统,以满足大中型建筑和酒店等大型企业对太阳能的部分需求。对日本太阳能潜力丰富的不同地区进行了模拟研究。这些县和它们所属的省;Silifke-İçel, Alanya-Antalya, Bodrum-Muğla, Çeşme-İzmir。传送至市区中心的功率值,是根据各区的瞬时辐射值及日照时数而厘定。通过比较三种不同有机流体类型的流体来确定太阳能ORC的性能。设计中使用的有机流体和类型;苯-芳烃,环己烷-烷烃,八甲基环四硅氧烷(D4)-硅氧烷。考虑到夏季太阳能ORC获得的最大电能值,可以看出,7月份在223℃的热源温度下,苯对Silifke的发电量为205 MWh。Alanya地区6月含苯地区最大太阳能抛物槽集热器比电功率值为59.52 W/m2。四区综合评价,确定苯的性能比环己烷平均好3.8%,比D4平均好23%。通过对年电能值的考察,确定了Alanya地区苯流体的最高产量为1625 MWh。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
35
期刊介绍: The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信