Francesco Pagliaro, Paolo Lotti, Davide Comboni, Tommaso Battiston, Alessandro Guastoni, Patrizia Fumagalli, Nicola Rotiroti, G. Diego Gatta
{"title":"High-pressure behavior of gasparite-(Ce) (nominally CeAsO4), a monazite-type arsenate","authors":"Francesco Pagliaro, Paolo Lotti, Davide Comboni, Tommaso Battiston, Alessandro Guastoni, Patrizia Fumagalli, Nicola Rotiroti, G. Diego Gatta","doi":"10.1007/s00269-022-01222-5","DOIUrl":null,"url":null,"abstract":"<div><p>The high-pressure behavior of the natural arsenate gasparite-(Ce) [Ce<sub>0.43</sub>La<sub>0.24</sub>Nd<sub>0.15</sub>Ca<sub>0.11</sub>Pr<sub>0.04</sub>Sm<sub>0.02</sub>Gd<sub>0.01</sub>(As<sub>0.99</sub>Si<sub>0.03</sub>O<sub>4</sub>)] from the Mt. Cervandone mineral deposit (Piedmont Lepontine Alps, Italy), has been studied by in situ single-crystal synchrotron X-ray diffraction up to 22.01 GPa. Two distinct high-pressure ramps have been performed, using a 16:3:1 methanol:ethanol:water solution and helium as <i>P</i>-transmitting fluids, respectively. No phase transition occurs within the pressure range investigated, whereas a change in the compressional behavior has been observed at ~ 15 GPa. A second-order Birch-Murnaghan EoS was fitted to the <i>P-V</i> data, leading to a refined bulk modulus of 109.4(3) GPa. The structural analysis has been carried out on the basis of the refined structure models, allowing the description of the deformation mechanisms accommodating the bulk compression in gasparite-(Ce) at the atomic scale, which is mainly controlled by the compression of the Rare Earth Elements coordination polyhedra, while the AsO<sub>4</sub> tetrahedra behave as a quasi-rigid units. A micro-Raman spectroscopy analysis, performed at ambient conditions, suggests the presence of hydroxyl groups into the structure of the investigated gasparite-(Ce).</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 12","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01222-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01222-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high-pressure behavior of the natural arsenate gasparite-(Ce) [Ce0.43La0.24Nd0.15Ca0.11Pr0.04Sm0.02Gd0.01(As0.99Si0.03O4)] from the Mt. Cervandone mineral deposit (Piedmont Lepontine Alps, Italy), has been studied by in situ single-crystal synchrotron X-ray diffraction up to 22.01 GPa. Two distinct high-pressure ramps have been performed, using a 16:3:1 methanol:ethanol:water solution and helium as P-transmitting fluids, respectively. No phase transition occurs within the pressure range investigated, whereas a change in the compressional behavior has been observed at ~ 15 GPa. A second-order Birch-Murnaghan EoS was fitted to the P-V data, leading to a refined bulk modulus of 109.4(3) GPa. The structural analysis has been carried out on the basis of the refined structure models, allowing the description of the deformation mechanisms accommodating the bulk compression in gasparite-(Ce) at the atomic scale, which is mainly controlled by the compression of the Rare Earth Elements coordination polyhedra, while the AsO4 tetrahedra behave as a quasi-rigid units. A micro-Raman spectroscopy analysis, performed at ambient conditions, suggests the presence of hydroxyl groups into the structure of the investigated gasparite-(Ce).
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)