Parallel Minimum Cuts in O(m log2 n) Work and Low Depth

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Daniel Anderson, G. Blelloch
{"title":"Parallel Minimum Cuts in O(m log2 n) Work and Low Depth","authors":"Daniel Anderson, G. Blelloch","doi":"10.1145/3565557","DOIUrl":null,"url":null,"abstract":"We present a randomized O(m log2 n) work, O(polylog n) depth parallel algorithm for minimum cut. This algorithm matches the work bounds of a recent sequential algorithm by Gawrychowski, Mozes, and Weimann [ICALP’20], and improves on the previously best parallel algorithm by Geissmann and Gianinazzi [SPAA’18], which performs O(m log4 n) work in O(polylog n) depth. Our algorithm makes use of three components that might be of independent interest. Firstly, we design a parallel data structure that efficiently supports batched mixed queries and updates on trees. It generalizes and improves the work bounds of a previous data structure of Geissmann and Gianinazzi and is work efficient with respect to the best sequential algorithm. Secondly, we design a parallel algorithm for approximate minimum cut that improves on previous results by Karger and Motwani. We use this algorithm to give a work-efficient procedure to produce a tree packing, as in Karger’s sequential algorithm for minimum cuts. Lastly, we design an efficient parallel algorithm for solving the minimum 2-respecting cut problem.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

We present a randomized O(m log2 n) work, O(polylog n) depth parallel algorithm for minimum cut. This algorithm matches the work bounds of a recent sequential algorithm by Gawrychowski, Mozes, and Weimann [ICALP’20], and improves on the previously best parallel algorithm by Geissmann and Gianinazzi [SPAA’18], which performs O(m log4 n) work in O(polylog n) depth. Our algorithm makes use of three components that might be of independent interest. Firstly, we design a parallel data structure that efficiently supports batched mixed queries and updates on trees. It generalizes and improves the work bounds of a previous data structure of Geissmann and Gianinazzi and is work efficient with respect to the best sequential algorithm. Secondly, we design a parallel algorithm for approximate minimum cut that improves on previous results by Karger and Motwani. We use this algorithm to give a work-efficient procedure to produce a tree packing, as in Karger’s sequential algorithm for minimum cuts. Lastly, we design an efficient parallel algorithm for solving the minimum 2-respecting cut problem.
O(m log2n)工作和低深度的平行最小切口
我们提出了一种用于最小割的O(m log2n)工作,O(polylogn)深度并行算法。该算法与Gawrychowski、Mozes和Weimann最近的序列算法[ICALP'20]的工作边界相匹配,并改进了Geissmann和Gianinazzi之前的最佳并行算法[SPA'18],该算法在O(polylogn)深度中执行O(m log4n)功。我们的算法使用了三个可能独立感兴趣的组件。首先,我们设计了一个并行数据结构,它有效地支持对树的批量混合查询和更新。它推广和改进了Geissmann和Gianinazzi先前数据结构的工作边界,并且相对于最佳序列算法是有效的。其次,我们设计了一个近似最小割的并行算法,该算法改进了Karger和Motwani先前的结果。我们使用这个算法来给出一个高效的生成树包装的过程,就像Karger的最小切割序列算法一样。最后,我们设计了一个有效的并行算法来解决最小2相关割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信