{"title":"Organocatalysis Combined with Photocatalysis","authors":"Yi-Yin Liu, Jing Liu, Liang-Qiu Lu, Wen-Jing Xiao","doi":"10.1007/s41061-019-0265-0","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, the combination of visible light photocatalysis and organocatalysis has made remarkable progress in modern chemical synthesis. In these dual catalysis system, photocatalysts or photosensitizers absorb visible light to induce their photoexcited states which can activate unreactive substrates via electron or energy transfer mechanisms, and organocatalysts are usually employed to regulate the chemical reactivity of the other substrates. By doing so, two reactive species react with each in a selective—especially enantioselective—way, to provide the final products. This article summarizes the recent development of cooperative catalysis by the combination of organocatalysis and photocatalysis in asymmetric organic synthesis. These reactions are classified according to the manner of activation of the organocatalysts. Enamine/iminium catalysts are used to activate unreactive carbonyl molecules. Nucleophilic catalysts including nitrogen heterocycle carbene catalysts and tertiary amine catalysts are employed to reverse the reactivity of electrodeficient substrates including aldehydes and enals. Chiral Br?nsted acid catalysts are used to activate substrates by forming key H-bonding complexes between substrates and catalysts.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"377 6","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-019-0265-0","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-019-0265-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
Over the past decade, the combination of visible light photocatalysis and organocatalysis has made remarkable progress in modern chemical synthesis. In these dual catalysis system, photocatalysts or photosensitizers absorb visible light to induce their photoexcited states which can activate unreactive substrates via electron or energy transfer mechanisms, and organocatalysts are usually employed to regulate the chemical reactivity of the other substrates. By doing so, two reactive species react with each in a selective—especially enantioselective—way, to provide the final products. This article summarizes the recent development of cooperative catalysis by the combination of organocatalysis and photocatalysis in asymmetric organic synthesis. These reactions are classified according to the manner of activation of the organocatalysts. Enamine/iminium catalysts are used to activate unreactive carbonyl molecules. Nucleophilic catalysts including nitrogen heterocycle carbene catalysts and tertiary amine catalysts are employed to reverse the reactivity of electrodeficient substrates including aldehydes and enals. Chiral Br?nsted acid catalysts are used to activate substrates by forming key H-bonding complexes between substrates and catalysts.
期刊介绍:
Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.