{"title":"Mullite Ceramics Derived from Fly Ash Powder by Using Albumin as an Organic Gelling Agent","authors":"","doi":"10.33263/briac134.339","DOIUrl":null,"url":null,"abstract":"Mullite is a combination compound of alumina (Al2O3) and silica (SiO2). During the last two decades, mullite ceramics have become the crucial oxide material for both traditional and advanced applications due to their favorable properties, such as good strength at very high temperatures, low density, good thermal shock resistance, and chemically stable. Mullite is also known for its stoichiometry 3Al2O3.2SiO2, or sometimes it is called 3/2 mullite. In this present investigation, the authors attempt to fabricate mullite-based ceramic through a gel casting process by using an organic binder (egg white) to consolidate powder particles, followed by low-temperature sintering. Fly ash powder, china clay powder, and alumina powder were used as raw materials to make mullite ceramic. Green bodies were fabricated by taking various proportions of fly ash, china clay, and alumina, followed by sintering at 1200C, 1250C, and 1300C for 2 hours. The stability of slurries was studied by measuring zeta potential, and green sample fracture surfaces were analyzed by Field Emission Scanning Electron Microscopy (FESEM). Physical properties of sintered samples, such as linear shrinkage, density, porosity, and water absorption, were also calculated. Evidence of mullite formation was characterized by Field Emission Scanning Electron Microscopy (FESEM scanning electron microscopy (SEM) techniques. The samples containing 45 wt.% fly ash, 15 wt.% china clay, and 40 wt.% aluminas showed the best physical properties compared to other batch compositions and were well supported by the results obtained from FESEM results.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Mullite is a combination compound of alumina (Al2O3) and silica (SiO2). During the last two decades, mullite ceramics have become the crucial oxide material for both traditional and advanced applications due to their favorable properties, such as good strength at very high temperatures, low density, good thermal shock resistance, and chemically stable. Mullite is also known for its stoichiometry 3Al2O3.2SiO2, or sometimes it is called 3/2 mullite. In this present investigation, the authors attempt to fabricate mullite-based ceramic through a gel casting process by using an organic binder (egg white) to consolidate powder particles, followed by low-temperature sintering. Fly ash powder, china clay powder, and alumina powder were used as raw materials to make mullite ceramic. Green bodies were fabricated by taking various proportions of fly ash, china clay, and alumina, followed by sintering at 1200C, 1250C, and 1300C for 2 hours. The stability of slurries was studied by measuring zeta potential, and green sample fracture surfaces were analyzed by Field Emission Scanning Electron Microscopy (FESEM). Physical properties of sintered samples, such as linear shrinkage, density, porosity, and water absorption, were also calculated. Evidence of mullite formation was characterized by Field Emission Scanning Electron Microscopy (FESEM scanning electron microscopy (SEM) techniques. The samples containing 45 wt.% fly ash, 15 wt.% china clay, and 40 wt.% aluminas showed the best physical properties compared to other batch compositions and were well supported by the results obtained from FESEM results.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.