Single-atom surface anchoring strategy via atomic layer deposition to achieve dual catalysts with remarkable electrochemical performance

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2023-04-25 DOI:10.1002/eom2.12351
Zhongxin Song, Qi Wang, Junjie Li, Keegan Adair, Ruying Li, Lei Zhang, Meng Gu, Xueliang Sun
{"title":"Single-atom surface anchoring strategy via atomic layer deposition to achieve dual catalysts with remarkable electrochemical performance","authors":"Zhongxin Song,&nbsp;Qi Wang,&nbsp;Junjie Li,&nbsp;Keegan Adair,&nbsp;Ruying Li,&nbsp;Lei Zhang,&nbsp;Meng Gu,&nbsp;Xueliang Sun","doi":"10.1002/eom2.12351","DOIUrl":null,"url":null,"abstract":"<p>Pt-Ir catalysts have been widely applied in unitized regenerative fuel cells due to their great activity for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the application of noble metals is seriously hindered by their high cost and low abundance. To reduce the noble metals loading and catalyst cost, the atomic layer deposition is applied to selectively surface anchoring of Ir single atoms (SA) on Pt nanoparticles (NP). With the formation of SA-NP composite structure, the Ir<sub>SA</sub>-Pt<sub>NP</sub> catalyst exhibits significantly improved performance, achieving 2.0- and 90-times mass activity by comparison with the benchmark Pt/C catalyst for the ORR and OER, respectively. Density functional theory calculations indicate that the SA-NP cooperation synergy endows the Ir<sub>SA</sub>-Pt<sub>NP</sub> catalyst to surpass the bifunctional catalytic activity limit of Pt-Ir NPs. This work provides a novel strategy for the construction of high-performing dual catalyst through designing the single atom anchoring on NPs.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12351","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pt-Ir catalysts have been widely applied in unitized regenerative fuel cells due to their great activity for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the application of noble metals is seriously hindered by their high cost and low abundance. To reduce the noble metals loading and catalyst cost, the atomic layer deposition is applied to selectively surface anchoring of Ir single atoms (SA) on Pt nanoparticles (NP). With the formation of SA-NP composite structure, the IrSA-PtNP catalyst exhibits significantly improved performance, achieving 2.0- and 90-times mass activity by comparison with the benchmark Pt/C catalyst for the ORR and OER, respectively. Density functional theory calculations indicate that the SA-NP cooperation synergy endows the IrSA-PtNP catalyst to surpass the bifunctional catalytic activity limit of Pt-Ir NPs. This work provides a novel strategy for the construction of high-performing dual catalyst through designing the single atom anchoring on NPs.

Abstract Image

通过原子层沉积实现单原子表面锚定策略,以实现具有显著电化学性能的双催化剂
Pt-Ir催化剂由于具有良好的氧还原反应(ORR)和析氧反应(OER)活性,在组合式再生燃料电池中得到了广泛的应用。然而,贵金属的高成本和低丰度严重阻碍了其应用。为了减少贵金属的负载和催化剂的成本,采用原子层沉积的方法选择性地将Ir单原子(SA)锚定在Pt纳米粒子(NP)上。随着SA-NP复合结构的形成,IrSA-PtNP催化剂的性能得到了显著提高,与基准Pt/C催化剂相比,ORR和OER的质量活性分别达到2.0倍和90倍。密度泛函理论计算表明,SA-NP的协同作用使IrSA-PtNP催化剂超越了Pt-Ir NPs的双功能催化活性极限。本研究通过设计NPs上的单原子锚定,为构建高性能双催化剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信