Mass Transportation Functionals on the Sphere with Applications to the Logarithmic Minkowski Problem

A. Kolesnikov
{"title":"Mass Transportation Functionals on the Sphere with Applications to the Logarithmic Minkowski Problem","authors":"A. Kolesnikov","doi":"10.17323/1609-4514-2020-20-1-67-91","DOIUrl":null,"url":null,"abstract":"We study the transportation problem on the unit sphere $S^{n-1}$ for symmetric probability measures and the cost function $c(x,y) = \\log \\frac{1}{\\langle x, y \\rangle}$. \nWe calculate the variation of the corresponding Kantorovich functional $K$ and study a naturally associated metric-measure space on $S^{n-1}$ endowed with a Riemannian \nmetric generated by the corresponding transportational potential. We introduce a new transportational functional which minimizers are \nsolutions to the symmetric log-Minkowski problem and prove that $K$ satisfies the following analog of the Gaussian transportation inequality for the uniform probability measure ${\\sigma}$ on $S^{n-1}$: \n$\\frac{1}{n} Ent(\\nu) \\ge K({\\sigma}, \\nu)$. It is shown that there exists a remarkable similarity between our results and the theory of the K{\\\"a}hler-Einstein equation on Euclidean space. \nAs a by-product we obtain a new proof of uniqueness of solution to the log-Minkowski problem for the uniform measure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2020-20-1-67-91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We study the transportation problem on the unit sphere $S^{n-1}$ for symmetric probability measures and the cost function $c(x,y) = \log \frac{1}{\langle x, y \rangle}$. We calculate the variation of the corresponding Kantorovich functional $K$ and study a naturally associated metric-measure space on $S^{n-1}$ endowed with a Riemannian metric generated by the corresponding transportational potential. We introduce a new transportational functional which minimizers are solutions to the symmetric log-Minkowski problem and prove that $K$ satisfies the following analog of the Gaussian transportation inequality for the uniform probability measure ${\sigma}$ on $S^{n-1}$: $\frac{1}{n} Ent(\nu) \ge K({\sigma}, \nu)$. It is shown that there exists a remarkable similarity between our results and the theory of the K{\"a}hler-Einstein equation on Euclidean space. As a by-product we obtain a new proof of uniqueness of solution to the log-Minkowski problem for the uniform measure.
分享
查看原文
球面上的质量运输函数及其在对数Minkowski问题中的应用
我们研究了对称概率测度和代价函数$c(x,y)=\log\frac{1}{\langle x,y\rangle}$的单位球面$S^{n-1}$上的输运问题。我们计算了相应的Kantorovich泛函$K$的变分,并研究了$S^{n-1}$上的一个自然相关度量测度空间,该空间被赋予了由相应的输运势生成的黎曼度量。我们引入了一个新的传输函数,该函数的极小值是对称log-Minkowski问题的解,并证明$K$满足以下关于$S^{n-1}$上一致概率测度${\sigma}$的高斯传输不等式的模拟:$\frac{1}{n}Ent(\nu)\ge K({\ssigma},\nu)$。结果表明,我们的结果与欧氏空间上K{a}hler-Einstein方程的理论存在显著的相似性。作为副产品,我们得到了一致测度的log-Minkowski问题解的唯一性的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信