N. Maroldt, Stefanie Lohse, J. Seume, Matthias Kalla, B. Ponick
{"title":"Multidisciplinary Design of an Electrically Powered High-Lift System","authors":"N. Maroldt, Stefanie Lohse, J. Seume, Matthias Kalla, B. Ponick","doi":"10.1115/1.4062677","DOIUrl":null,"url":null,"abstract":"\n To date, design processes for electrically powered compressor are mainly based on separate processes for each individual component. Whereas the blading is often designed by an integrated aerodynamic and mechanical design optimization, additional components such as the electrical machine are usually not included. These approaches neglect the interactions of the individual components, which can influence the system performance. This paper demonstrates a multidisciplinary design approach, combining an optimization approach for a compressor stage and an electrical machine. The automated optimization process is based on an evolutionary algorithm, evaluating each individual of a population in terms of aerodynamic performance, structural integrity and performance of the electrical machine. This approach is applied to the design of a mixed-flow compressor for active high-lift applications in aircraft. The results suggest that the overall system efficiency is mainly influenced by the compressor stage, whereas the system mass is dominated by the electrical components which highlights the need to combine both optimization approaches. Key design parameters of high power-density electrical-machine designs are identified. A comparison between a previous compressor-only optimization and a new design based on the new multidisciplinary optimization confirms the improvements the latter optimization approach yields.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062677","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To date, design processes for electrically powered compressor are mainly based on separate processes for each individual component. Whereas the blading is often designed by an integrated aerodynamic and mechanical design optimization, additional components such as the electrical machine are usually not included. These approaches neglect the interactions of the individual components, which can influence the system performance. This paper demonstrates a multidisciplinary design approach, combining an optimization approach for a compressor stage and an electrical machine. The automated optimization process is based on an evolutionary algorithm, evaluating each individual of a population in terms of aerodynamic performance, structural integrity and performance of the electrical machine. This approach is applied to the design of a mixed-flow compressor for active high-lift applications in aircraft. The results suggest that the overall system efficiency is mainly influenced by the compressor stage, whereas the system mass is dominated by the electrical components which highlights the need to combine both optimization approaches. Key design parameters of high power-density electrical-machine designs are identified. A comparison between a previous compressor-only optimization and a new design based on the new multidisciplinary optimization confirms the improvements the latter optimization approach yields.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.