Domenico Minici , Guglielmo Cola , Giulia Perfetti , Sofia Espinoza Tofalos , Mauro Di Bari , Marco Avvenuti
{"title":"Automated, ecologic assessment of frailty using a wrist-worn device","authors":"Domenico Minici , Guglielmo Cola , Giulia Perfetti , Sofia Espinoza Tofalos , Mauro Di Bari , Marco Avvenuti","doi":"10.1016/j.pmcj.2023.101833","DOIUrl":null,"url":null,"abstract":"<div><p>The COVID-19 pandemic has considerably shifted the focus of scientific research, speeding up the process of digitizing medical monitoring. Wearable technology is already widely used in medical research, as it has the potential to monitor the user’s physical activity in daily life. This study aims to explore in-home collected wearable-derived signals for frailty status assessment. A sample of 35 subjects aged 70+, autonomous in basic activities of daily living and cognitively intact, was collected. After being clinically assessed for frailty according to Fried’s phenotype, participants wore a wrist device equipped with inertial motion sensors for 24 h, during which they led their usual life in their homes. Signal-derived traces were split into 10-s segments and labeled classified as gaits, other motor activities, or rests. Gait and other motor activity segments were used to calculate the Subject Activity Level (SAL), an index to quantify how users were active throughout the day. The SAL index was then combined with gait-derived features to design a novel frailty status assessment algorithm. In particular, subjects were classified as robust or non-robust, a category that includes both Fried’s frail and pre-frail phenotypes. For some users, activity levels alone enabled accurate frailty assessment, whereas, for others, a Gaussian Naive Bayes classifier based on the gait-derived features was required to assess frailty status. Overall, the proposed method showed extremely promising results, allowing discrimination of robust and non-robust subjects with an overall 91% accuracy, stemming from 95% sensitivity and 88% specificity. This study demonstrates the potential of unobtrusive, wearable devices in objectively assessing frailty through unsupervised monitoring in real-world settings.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"95 ","pages":"Article 101833"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000913","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has considerably shifted the focus of scientific research, speeding up the process of digitizing medical monitoring. Wearable technology is already widely used in medical research, as it has the potential to monitor the user’s physical activity in daily life. This study aims to explore in-home collected wearable-derived signals for frailty status assessment. A sample of 35 subjects aged 70+, autonomous in basic activities of daily living and cognitively intact, was collected. After being clinically assessed for frailty according to Fried’s phenotype, participants wore a wrist device equipped with inertial motion sensors for 24 h, during which they led their usual life in their homes. Signal-derived traces were split into 10-s segments and labeled classified as gaits, other motor activities, or rests. Gait and other motor activity segments were used to calculate the Subject Activity Level (SAL), an index to quantify how users were active throughout the day. The SAL index was then combined with gait-derived features to design a novel frailty status assessment algorithm. In particular, subjects were classified as robust or non-robust, a category that includes both Fried’s frail and pre-frail phenotypes. For some users, activity levels alone enabled accurate frailty assessment, whereas, for others, a Gaussian Naive Bayes classifier based on the gait-derived features was required to assess frailty status. Overall, the proposed method showed extremely promising results, allowing discrimination of robust and non-robust subjects with an overall 91% accuracy, stemming from 95% sensitivity and 88% specificity. This study demonstrates the potential of unobtrusive, wearable devices in objectively assessing frailty through unsupervised monitoring in real-world settings.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.