Johannes Ziesmer , Ding Jin , Askar Mukashov , Christian Henning
{"title":"Integrating fundamental model uncertainty in policy analysis","authors":"Johannes Ziesmer , Ding Jin , Askar Mukashov , Christian Henning","doi":"10.1016/j.seps.2023.101591","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable economic development in the future is driven by public policy on regional, national and global levels. Therefore a comprehensive policy analysis is needed that provides consistent and effective policy support. However, a general problem facing classical policy analysis is model uncertainty. All actors, those involved in the policy choice and those in the policy analysis, are fundamentally uncertain which of the different models corresponds to the true generative mechanism that represents the natural, economic, or social phenomena on which policy analysis is focused. In this paper, we propose a general framework that explicitly incorporates model uncertainty into the derivation of a policy choice. Incorporating model uncertainty into the analysis is limited by the very high required computational effort. In this regard, we apply metamodeling techniques as a way to reduce computational complexity. We demonstrate the effect of different metamodel types using a reduced model for the case of CAADP in Senegal. Furthermore, we explicitly show that ignoring model uncertainty leads to inefficient policy choices and results in a large waste of public resources.</p></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"87 ","pages":"Article 101591"},"PeriodicalIF":6.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012123000915","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Sustainable economic development in the future is driven by public policy on regional, national and global levels. Therefore a comprehensive policy analysis is needed that provides consistent and effective policy support. However, a general problem facing classical policy analysis is model uncertainty. All actors, those involved in the policy choice and those in the policy analysis, are fundamentally uncertain which of the different models corresponds to the true generative mechanism that represents the natural, economic, or social phenomena on which policy analysis is focused. In this paper, we propose a general framework that explicitly incorporates model uncertainty into the derivation of a policy choice. Incorporating model uncertainty into the analysis is limited by the very high required computational effort. In this regard, we apply metamodeling techniques as a way to reduce computational complexity. We demonstrate the effect of different metamodel types using a reduced model for the case of CAADP in Senegal. Furthermore, we explicitly show that ignoring model uncertainty leads to inefficient policy choices and results in a large waste of public resources.
期刊介绍:
Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry.
Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution.
Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.