{"title":"EXPERT RECOMMENDATION THROUGH TAG RELATIONSHIP IN COMMUNITY QUESTION ANSWERING","authors":"A. Anandhan, M. Ismail, Liyana Shuib","doi":"10.22452/mjcs.vol35no3.2","DOIUrl":null,"url":null,"abstract":"Community Question Answering (CQA) services are technical discussion forums websites on social media that serve as a platform for users to interact mainly via question and answer. However, users of this platform have posed dissatisfaction over the slow response and the preference for user domains due to the overwhelming information in CQA websites. Numerous past studies focusing on expert recommendation are solely based on the information available from websites where they rarely account for the preference of users’ domain knowledge. This condition prompts the need to identify experts for the questions posted on community-based websites. Thus, this study attempts to identify ranking experts’ derived from the tag relationship among users in the CQA websites to construct user profiles where their interests are realized in the form of tags. Experts are considered users who post high-quality answers and are often recommended by the system based on their previous posts and associated tags. These associations further describe tags that often co-occur in posts and the significant domains of user interest. The current study further explores this relationship by adopting the “Tag Relationship Expert Recommendation (TRER)” method where Questions Answer (QA) Space is utilized as a dataset to identify users with similar interests and subsequently rank experts based on the tag-tag relationship for user’s question. The results show that the TRER method outperforms existing baseline methods by effectively improving the performance of relevant domain experts in CQA, thereby facilitating the expert recommendation process in answering questions posted by technical and academic professionals.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol35no3.2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Community Question Answering (CQA) services are technical discussion forums websites on social media that serve as a platform for users to interact mainly via question and answer. However, users of this platform have posed dissatisfaction over the slow response and the preference for user domains due to the overwhelming information in CQA websites. Numerous past studies focusing on expert recommendation are solely based on the information available from websites where they rarely account for the preference of users’ domain knowledge. This condition prompts the need to identify experts for the questions posted on community-based websites. Thus, this study attempts to identify ranking experts’ derived from the tag relationship among users in the CQA websites to construct user profiles where their interests are realized in the form of tags. Experts are considered users who post high-quality answers and are often recommended by the system based on their previous posts and associated tags. These associations further describe tags that often co-occur in posts and the significant domains of user interest. The current study further explores this relationship by adopting the “Tag Relationship Expert Recommendation (TRER)” method where Questions Answer (QA) Space is utilized as a dataset to identify users with similar interests and subsequently rank experts based on the tag-tag relationship for user’s question. The results show that the TRER method outperforms existing baseline methods by effectively improving the performance of relevant domain experts in CQA, thereby facilitating the expert recommendation process in answering questions posted by technical and academic professionals.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus