Bowen Zhang , Shi Chen , Guo-Quan. Lu , Yun-Hui. Mei
{"title":"Reliability Behavior of A Resin-Free Nanosilver Paste at Ultra-Low Temperature of 180°C","authors":"Bowen Zhang , Shi Chen , Guo-Quan. Lu , Yun-Hui. Mei","doi":"10.1016/j.pedc.2022.100014","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, excellent thermo-mechanical reliability of resin-free silver sintering for large-area (20 × 20 mm<sup>2</sup>) bonding was successfully achieved by using a trimodal particle system composed of nano-, submicron-, and micron-sized Ag particles. After 1000 cycles of the thermal shock (TS) test, the transient thermal impedance (<em>Z</em><sub>th</sub>) increase of the proposed resin-free silver paste sintered at 180°C under 2 MPa and 5 MPa is only 5.8% and 6.1%, respectively. Due to the avoidance of resin degradation, the obtained resin-free silver paste as-sintered under 5 MPa exhibt outstanding shear strength (>12.5 MPa) even after 1000 cycles TS test. The obtained cross-sectional microstructure can confirms the excellent thermo-mechanical reliability of the sintered resin-free silver paste, which exhibits a denser and more homogeneous bonding layer with a porosity as low as 12.5%. Furthermore, distinct indications of plastic flow can be observed on the fracture surfaces of corresponding joints before and after aging, which further confirm the superiority of proposed resin-free sintering method. The development of novel resin-free silver paste successfully promotes the thermo-mechanical reliability of silicon carbide (SiC) power devices at a low processing temperature of 180°C, and greatly benefits the practical application of SiC power devices.</p></div>","PeriodicalId":74483,"journal":{"name":"Power electronic devices and components","volume":"3 ","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772370422000116/pdfft?md5=9130e3a3dd989bf628bfe74e34bab39d&pid=1-s2.0-S2772370422000116-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power electronic devices and components","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772370422000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, excellent thermo-mechanical reliability of resin-free silver sintering for large-area (20 × 20 mm2) bonding was successfully achieved by using a trimodal particle system composed of nano-, submicron-, and micron-sized Ag particles. After 1000 cycles of the thermal shock (TS) test, the transient thermal impedance (Zth) increase of the proposed resin-free silver paste sintered at 180°C under 2 MPa and 5 MPa is only 5.8% and 6.1%, respectively. Due to the avoidance of resin degradation, the obtained resin-free silver paste as-sintered under 5 MPa exhibt outstanding shear strength (>12.5 MPa) even after 1000 cycles TS test. The obtained cross-sectional microstructure can confirms the excellent thermo-mechanical reliability of the sintered resin-free silver paste, which exhibits a denser and more homogeneous bonding layer with a porosity as low as 12.5%. Furthermore, distinct indications of plastic flow can be observed on the fracture surfaces of corresponding joints before and after aging, which further confirm the superiority of proposed resin-free sintering method. The development of novel resin-free silver paste successfully promotes the thermo-mechanical reliability of silicon carbide (SiC) power devices at a low processing temperature of 180°C, and greatly benefits the practical application of SiC power devices.
Power electronic devices and componentsHardware and Architecture, Electrical and Electronic Engineering, Atomic and Molecular Physics, and Optics, Safety, Risk, Reliability and Quality