{"title":"Quantum Prey–Predator Dynamics: A Gaussian Ensemble Analysis","authors":"A. E. Bernardini, O. Bertolami","doi":"10.1007/s10701-023-00703-z","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum frameworks for modeling competitive ecological systems and self-organizing structures have been investigated under multiple perspectives yielded by quantum mechanics. These comprise the description of the phase-space prey–predator competition dynamics in the framework of the Weyl–Wigner quantum mechanics. In this case, from the classical dynamics described by the Lotka–Volterra (LV) Hamiltonian, quantum states convoluted by statistical gaussian ensembles can be analytically evaluated. Quantum modifications on the patterns of equilibrium and stability of the prey–predator dynamics can then be identified. These include quantum distortions over the equilibrium point drivers of the LV dynamics which are quantified through the Wigner current fluxes obtained from an onset Hamiltonian background. In addition, for gaussian ensembles highly localized around the equilibrium point, stability properties are shown to be affected by emergent topological quantum domains which, in some cases, could lead either to extinction and revival scenarios or to the perpetual coexistence of both prey and predator agents identified as quantum observables in microscopic systems. Conclusively, quantum and gaussian statistical driving parameters are shown to affect the stability criteria and the time evolution pattern for such microbiological-like communities.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00703-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Quantum frameworks for modeling competitive ecological systems and self-organizing structures have been investigated under multiple perspectives yielded by quantum mechanics. These comprise the description of the phase-space prey–predator competition dynamics in the framework of the Weyl–Wigner quantum mechanics. In this case, from the classical dynamics described by the Lotka–Volterra (LV) Hamiltonian, quantum states convoluted by statistical gaussian ensembles can be analytically evaluated. Quantum modifications on the patterns of equilibrium and stability of the prey–predator dynamics can then be identified. These include quantum distortions over the equilibrium point drivers of the LV dynamics which are quantified through the Wigner current fluxes obtained from an onset Hamiltonian background. In addition, for gaussian ensembles highly localized around the equilibrium point, stability properties are shown to be affected by emergent topological quantum domains which, in some cases, could lead either to extinction and revival scenarios or to the perpetual coexistence of both prey and predator agents identified as quantum observables in microscopic systems. Conclusively, quantum and gaussian statistical driving parameters are shown to affect the stability criteria and the time evolution pattern for such microbiological-like communities.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.