{"title":"Multilevel diode clamped D-Statcom for power quality improvement in distribution systems","authors":"Jasti Venkata Ramesh Babu, Malligunta Kiran Kumar","doi":"10.11591/IJPEDS.V12.I1.PP217-227","DOIUrl":null,"url":null,"abstract":"Power quality is one big issue in power system and a big challenge for power engineers today. Electrical consumers (or otherwise load devices) expect electrical power received power should be of first-class. Bad quality in electrical power directs to fuse blowing, machine overheating, increase in distribution losses, damage to sensitive load devices and many more. DSTATCOM is one of the FACTS controllers designed to improve the quality in electrical power and thus improving the performance of distribution system. This paper presents a multilevel DSTATCOM topology to enhance power quality in power distribution system delivering high-quality power to the customer load devices. Diode-clamped structure is employed for multi-level DSTATCOM structure. ‘PQ’ based control strategy generates reference signal which is further processed through level-shifted multi-carrier PWM strategy for the generation of gate pulses to multi-level DSTATCOM structure. Simulation work of proposed system is developed and the result analysis is presented using MATLAB/SIMULINK software. Performance of multi-level DSTATCOM topology is verified with fixed and variable loads.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"217-227"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP217-227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 9
Abstract
Power quality is one big issue in power system and a big challenge for power engineers today. Electrical consumers (or otherwise load devices) expect electrical power received power should be of first-class. Bad quality in electrical power directs to fuse blowing, machine overheating, increase in distribution losses, damage to sensitive load devices and many more. DSTATCOM is one of the FACTS controllers designed to improve the quality in electrical power and thus improving the performance of distribution system. This paper presents a multilevel DSTATCOM topology to enhance power quality in power distribution system delivering high-quality power to the customer load devices. Diode-clamped structure is employed for multi-level DSTATCOM structure. ‘PQ’ based control strategy generates reference signal which is further processed through level-shifted multi-carrier PWM strategy for the generation of gate pulses to multi-level DSTATCOM structure. Simulation work of proposed system is developed and the result analysis is presented using MATLAB/SIMULINK software. Performance of multi-level DSTATCOM topology is verified with fixed and variable loads.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.