Gabor orthogonal bases and convexity

IF 1 3区 数学 Q1 MATHEMATICS
Discrete Analysis Pub Date : 2017-08-01 DOI:10.19086/DA.5952
A. Iosevich, A. Mayeli
{"title":"Gabor orthogonal bases and convexity","authors":"A. Iosevich, A. Mayeli","doi":"10.19086/DA.5952","DOIUrl":null,"url":null,"abstract":"Let $g(x)=\\chi_B(x)$ be the indicator function of a bounded convex set in $\\Bbb R^d$, $d\\geq 2$, with a smooth boundary and everywhere non-vanishing Gaussian curvature. Using a combinatorial appraoch we prove that if $d \\neq 1 \\mod 4$, then there does not exist $S \\subset {\\Bbb R}^{2d}$ such that ${ \\{g(x-a)e^{2 \\pi i x \\cdot b} \\}}_{(a,b) \\in S}$ is an orthonormal basis for $L^2({\\Bbb R}^d)$.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.5952","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let $g(x)=\chi_B(x)$ be the indicator function of a bounded convex set in $\Bbb R^d$, $d\geq 2$, with a smooth boundary and everywhere non-vanishing Gaussian curvature. Using a combinatorial appraoch we prove that if $d \neq 1 \mod 4$, then there does not exist $S \subset {\Bbb R}^{2d}$ such that ${ \{g(x-a)e^{2 \pi i x \cdot b} \}}_{(a,b) \in S}$ is an orthonormal basis for $L^2({\Bbb R}^d)$.
Gabor正交基与凸性
设$g(x)=\chi_B(x)$为$\Bbb R^d$, $d\geq 2$中有界凸集的指示函数,该凸集边界光滑,处处具有不消失的高斯曲率。用组合方法证明了如果$d \neq 1 \mod 4$,则不存在$S \subset {\Bbb R}^{2d}$使得${ \{g(x-a)e^{2 \pi i x \cdot b} \}}_{(a,b) \in S}$是$L^2({\Bbb R}^d)$的正交基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信