{"title":"In situ passivation effect of fertilizer passivation solutions with various pH on Pb-F contaminated soil","authors":"Yingdi Jiang, Yunzhu Chen, X. Wang, Zilichao Neng, Wanming Zhang","doi":"10.1139/cjss-2021-0140","DOIUrl":null,"url":null,"abstract":"Abstract The Maoniuping rare earth mine in Mianning, Liangshan Prefecture, is the largest rare earth deposit in China and the second largest rare earth deposit in the world. During the mining of rare earths, F and Pb, both types of heavy metal waste can directly or indirectly enter the soil, causing local soil contamination, which in turn poses a threat to the health of local residents. In this study, soil samples were incubated with fertilizer passivation solutions with pH values of 4, 5, 6, 7, 8, and 9, with the soil water content adjusted to 50% of the maximum water holding capacity in the field. The Pb-F contamination of the soil samples was analyzed to determine the existing states of the soil F and Pb and to study the remediation effect of fertilizer passivation solutions on the Pb-F contaminated soil. The results showed that under different passivation conditions, the pH, Pb, and F of the soil substantially changed and the passivation effect was enhanced over time. The pH of the soil significantly increased. The analysis of the effects of F and Pb treatment revealed that when the passivation fertilizer solution of pH 5 was used, the available Pb and F in the soil decreased the most, and the residual state of Pb and F increased to 77.86% and 57.24%, respectively.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2021-0140","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Maoniuping rare earth mine in Mianning, Liangshan Prefecture, is the largest rare earth deposit in China and the second largest rare earth deposit in the world. During the mining of rare earths, F and Pb, both types of heavy metal waste can directly or indirectly enter the soil, causing local soil contamination, which in turn poses a threat to the health of local residents. In this study, soil samples were incubated with fertilizer passivation solutions with pH values of 4, 5, 6, 7, 8, and 9, with the soil water content adjusted to 50% of the maximum water holding capacity in the field. The Pb-F contamination of the soil samples was analyzed to determine the existing states of the soil F and Pb and to study the remediation effect of fertilizer passivation solutions on the Pb-F contaminated soil. The results showed that under different passivation conditions, the pH, Pb, and F of the soil substantially changed and the passivation effect was enhanced over time. The pH of the soil significantly increased. The analysis of the effects of F and Pb treatment revealed that when the passivation fertilizer solution of pH 5 was used, the available Pb and F in the soil decreased the most, and the residual state of Pb and F increased to 77.86% and 57.24%, respectively.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.