Ulrike Brokmann, T. Milde, E. Rädlein, K. Liefeith
{"title":"Fabrication of 3D microchannels for tissue engineering in photosensitive glass using NIR femtosecond laser radiation","authors":"Ulrike Brokmann, T. Milde, E. Rädlein, K. Liefeith","doi":"10.1515/bglass-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract The biocompatibility of photosensitive glasses allows various biomedical applications; one is the field of tissue engineering and more precisely microengineered tissue-on-a-chip platforms to study the tissue microenvironment and disease modelling. Three dimensional architectures of adapted components are required for modern materials. A photosensitive lithiumalumosilicate glass FS21 was investigated regarding the interaction with a Ti:Sapphire laser systemto build three dimensional buried channels inside the glass. Femtosecond laser radiation with a wavelength of 800 nm and pulse duration of 140 fs was used to modify the glass structure. Subsurface channel geometries were achieved by a subsequent thermal treatment and were formed into capillaries using wet chemical etching of the exposed and crystallised channels. Contrary to ultraviolet (UV) exposure, spectral optical investigations showed that fs laser exposure caused various radiation induced defects in the base glass coupled with the generation of photoelectrons for the photochemical modification of silver ions. We observed an outgassing of different species coming from raw materials of the original glass batch during the glass crystallisation process. Etch rate ratios differ between 1:25 and 1:45 and are dependent on: stoichiometric deviation between surface and bulk, crystal size and distribution and exchange of the etching agent in narrow capillaries.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0003","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11
Abstract
Abstract The biocompatibility of photosensitive glasses allows various biomedical applications; one is the field of tissue engineering and more precisely microengineered tissue-on-a-chip platforms to study the tissue microenvironment and disease modelling. Three dimensional architectures of adapted components are required for modern materials. A photosensitive lithiumalumosilicate glass FS21 was investigated regarding the interaction with a Ti:Sapphire laser systemto build three dimensional buried channels inside the glass. Femtosecond laser radiation with a wavelength of 800 nm and pulse duration of 140 fs was used to modify the glass structure. Subsurface channel geometries were achieved by a subsequent thermal treatment and were formed into capillaries using wet chemical etching of the exposed and crystallised channels. Contrary to ultraviolet (UV) exposure, spectral optical investigations showed that fs laser exposure caused various radiation induced defects in the base glass coupled with the generation of photoelectrons for the photochemical modification of silver ions. We observed an outgassing of different species coming from raw materials of the original glass batch during the glass crystallisation process. Etch rate ratios differ between 1:25 and 1:45 and are dependent on: stoichiometric deviation between surface and bulk, crystal size and distribution and exchange of the etching agent in narrow capillaries.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.