Fluid Dynamics of Polar Vortices on Earth, Mars, and Titan

IF 25.4 1区 工程技术 Q1 MECHANICS
D. Waugh
{"title":"Fluid Dynamics of Polar Vortices on Earth, Mars, and Titan","authors":"D. Waugh","doi":"10.1146/annurev-fluid-120720-032208","DOIUrl":null,"url":null,"abstract":"Polar vortices that share many similarities are found in Earth's stratosphere and the atmospheres of Mars and Saturn's moon Titan. These vortices all occur in the winter, and are characterized by high potential vorticity (PV) in polar regions, steep meridional PV gradients and peak zonal winds in middle latitudes, and a cold pole. There are, however, differences in the daily and subseasonal variability, zonal asymmetries, and PV structure among the vortices. These differences are related to differences in the disruption of polar vortices by Rossby waves, the poleward extent of the mean meridional circulation, and condensation of major gases. There are also differences in the transport of gases and particles among the vortices. The range of polar vortex characteristics is likely much larger for terrestrial exoplanets, which include planets with, for example, a wider range of obliquities. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-120720-032208","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

Abstract

Polar vortices that share many similarities are found in Earth's stratosphere and the atmospheres of Mars and Saturn's moon Titan. These vortices all occur in the winter, and are characterized by high potential vorticity (PV) in polar regions, steep meridional PV gradients and peak zonal winds in middle latitudes, and a cold pole. There are, however, differences in the daily and subseasonal variability, zonal asymmetries, and PV structure among the vortices. These differences are related to differences in the disruption of polar vortices by Rossby waves, the poleward extent of the mean meridional circulation, and condensation of major gases. There are also differences in the transport of gases and particles among the vortices. The range of polar vortex characteristics is likely much larger for terrestrial exoplanets, which include planets with, for example, a wider range of obliquities. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
地球、火星和泰坦极地涡旋的流体动力学
在地球的平流层、火星和土星的卫星泰坦的大气层中发现了许多相似的极地涡旋。这些涡旋都发生在冬季,其特征是极地的高位涡(PV)、中纬度的陡峭经向PV梯度和峰值纬向风以及冷极。然而,涡旋之间的日变率和亚季节变率、纬向不对称性和PV结构存在差异。这些差异与罗斯比波对极地涡旋的破坏、平均经向环流的极地范围以及主要气体凝结的差异有关。涡流中气体和颗粒的传输也存在差异。类地系外行星的极涡特征范围可能要大得多,例如,包括倾角范围更宽的行星。《流体力学年度评论》第55卷预计最终在线出版日期为2023年1月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信