A Fuzzy Inference System for enhanced groundwater quality assessment and index determination

IF 2.4 4区 环境科学与生态学 Q2 WATER RESOURCES
Isaac Sajan R., V. B. Christopher
{"title":"A Fuzzy Inference System for enhanced groundwater quality assessment and index determination","authors":"Isaac Sajan R., V. B. Christopher","doi":"10.2166/wqrj.2023.031","DOIUrl":null,"url":null,"abstract":"\n \n Groundwater is a vital resource for human consumption, particularly in rural areas with limited access to treated water. Assessing groundwater quality is crucial for economic development and human well-being. The conventional Water Quality Index models used for this purpose have limitations related to data volatility and judgment uncertainties. To overcome these limitations, our study introduces a novel approach that employs a Fuzzy Inference System to determine the Water Quality Index. The dataset used in our research includes multiple parameters such as pH, EC, TDS, Ca, Mg, Na, K, HCO3, Cl, SO4, TH, DWQI, and other physio-chemical and chemical parameters. Our approach utilizes linguistic variables, fuzzy rules, and the hyperbolic tangent set function to handle imprecise and uncertain water quality data. By employing Fuzzy C-Means clustering, we group similar water samples based on quality parameters and map membership values to linguistic terms representing water quality categories. Suitable defuzzification methods are then applied to convert fuzzy outputs into precise results. This proposed approach provides a comprehensive framework for accurate water quality assessment, enabling informed decision-making and more reliable and precise evaluations of groundwater quality for human consumption. Our approach enhances groundwater safety and supports the effective management of this vital natural resource.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2023.031","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater is a vital resource for human consumption, particularly in rural areas with limited access to treated water. Assessing groundwater quality is crucial for economic development and human well-being. The conventional Water Quality Index models used for this purpose have limitations related to data volatility and judgment uncertainties. To overcome these limitations, our study introduces a novel approach that employs a Fuzzy Inference System to determine the Water Quality Index. The dataset used in our research includes multiple parameters such as pH, EC, TDS, Ca, Mg, Na, K, HCO3, Cl, SO4, TH, DWQI, and other physio-chemical and chemical parameters. Our approach utilizes linguistic variables, fuzzy rules, and the hyperbolic tangent set function to handle imprecise and uncertain water quality data. By employing Fuzzy C-Means clustering, we group similar water samples based on quality parameters and map membership values to linguistic terms representing water quality categories. Suitable defuzzification methods are then applied to convert fuzzy outputs into precise results. This proposed approach provides a comprehensive framework for accurate water quality assessment, enabling informed decision-making and more reliable and precise evaluations of groundwater quality for human consumption. Our approach enhances groundwater safety and supports the effective management of this vital natural resource.
强化地下水水质评价与指标确定的模糊推理系统
地下水是人类消费的重要资源,特别是在获得处理过的水的机会有限的农村地区。评估地下水质量对经济发展和人类福祉至关重要。用于此目的的传统水质指数模型存在与数据波动性和判断不确定性相关的局限性。为了克服这些限制,本研究引入了一种新的方法,即采用模糊推理系统来确定水质指数。我们研究使用的数据集包括pH、EC、TDS、Ca、Mg、Na、K、HCO3、Cl、SO4、TH、DWQI等多种理化和化学参数。我们的方法利用语言变量、模糊规则和双曲切线集函数来处理不精确和不确定的水质数据。通过使用模糊c均值聚类,我们根据水质参数对相似的水样进行分组,并将隶属度值映射到代表水质类别的语言术语上。然后采用合适的去模糊化方法将模糊输出转化为精确结果。这一提议的方法为准确的水质评估提供了一个全面的框架,使人们能够做出明智的决策,并对供人类消费的地下水质量进行更可靠和精确的评估。我们的方法提高了地下水的安全性,并支持对这一重要自然资源的有效管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
8.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信