On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Takashi Nakagawa , Hikaru Iwamori
{"title":"On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection","authors":"Takashi Nakagawa ,&nbsp;Hikaru Iwamori","doi":"10.1016/j.crte.2019.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the influence of the deep mantle water cycle incorporating dehydration reactions with subduction fluxes and degassing events on the thermal evolution of the Earth as a consequence of core–mantle thermal coupling. Since, in our numerical modeling, the mantle can have ocean masses ∼12 times larger than the present-day surface ocean, it seems that more than 13 ocean masses of water are at the maximum required within the planetary system overall to partition one ocean mass at the surface of the present-day Earth. This is caused by effects of water-dependent viscosity, which works at cooling down the mantle temperature significantly so that the water can be absorbed into the mantle transition zone and the uppermost lower mantle. This is a result similar to that without the effects of the thermal evolution of the Earth's core (Nakagawa et al., 2018). For the core's evolution, it seems to be expected for a partially molten state in the deep mantle over 2 billion years. Hence, the metal–silicate partitioning of hydrogen might have occurred at least 2 billion years ago. This suggests that the hydrogen generated from the phase transformation of hydrous-silicate-hosted water may have contributed to the partitioning of hydrogen into the metallic core, but it is still quite uncertain because the partitioning mechanism of hydrogen in metal–silicate partitioning is still controversial. In spite of many uncertainties for water circulation in the deep mantle, through this modeling investigation, it is possible to integrate the co-evolution of the deep planetary interior within that of the surface environment.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 197-208"},"PeriodicalIF":2.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2019.02.001","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071319300318","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

Abstract

We investigate the influence of the deep mantle water cycle incorporating dehydration reactions with subduction fluxes and degassing events on the thermal evolution of the Earth as a consequence of core–mantle thermal coupling. Since, in our numerical modeling, the mantle can have ocean masses ∼12 times larger than the present-day surface ocean, it seems that more than 13 ocean masses of water are at the maximum required within the planetary system overall to partition one ocean mass at the surface of the present-day Earth. This is caused by effects of water-dependent viscosity, which works at cooling down the mantle temperature significantly so that the water can be absorbed into the mantle transition zone and the uppermost lower mantle. This is a result similar to that without the effects of the thermal evolution of the Earth's core (Nakagawa et al., 2018). For the core's evolution, it seems to be expected for a partially molten state in the deep mantle over 2 billion years. Hence, the metal–silicate partitioning of hydrogen might have occurred at least 2 billion years ago. This suggests that the hydrogen generated from the phase transformation of hydrous-silicate-hosted water may have contributed to the partitioning of hydrogen into the metallic core, but it is still quite uncertain because the partitioning mechanism of hydrogen in metal–silicate partitioning is still controversial. In spite of many uncertainties for water circulation in the deep mantle, through this modeling investigation, it is possible to integrate the co-evolution of the deep planetary interior within that of the surface environment.

深行星内部的耦合演化与含水地幔对流中表层海水的存在的意义
我们研究了由脱水反应、俯冲通量和脱气事件组成的深部地幔水循环对地核-地幔热耦合引起的地球热演化的影响。因为,在我们的数值模拟中,地幔的海洋质量可以比现在的表面海洋大12倍,所以在整个行星系统中,要在今天的地球表面分割一个海洋质量,似乎需要超过13个海洋质量的水。这是由水依赖粘度的影响造成的,它可以显著降低地幔温度,使水可以被吸收到地幔过渡区和最上层的下地幔中。这一结果与不受地核热演化影响的结果相似(Nakagawa et al., 2018)。对于地核的演化,在20亿年的时间里,地幔深处似乎处于部分熔融状态。因此,氢的金属-硅酸盐分离可能至少发生在20亿年前。这表明含水硅酸盐的水相变产生的氢可能对氢向金属核的分配有一定的促进作用,但由于氢在金属硅酸盐分配中的分配机制仍存在争议,因此尚不确定。尽管深部地幔水循环存在许多不确定性,但通过模拟研究,可以将行星深部内部的共同演化与地表环境的共同演化结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Geoscience
Comptes Rendus Geoscience 地学-地球科学综合
CiteScore
2.80
自引率
14.30%
发文量
68
审稿时长
5.9 weeks
期刊介绍: Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community. It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信