A note on the zeros of the derivatives of Hardy's function Z ( t ) $Z(t)$

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-05-30 DOI:10.1112/mtk.12206
Hung M. Bui, Richard R. Hall
{"title":"A note on the zeros of the derivatives of Hardy's function \n \n \n Z\n (\n t\n )\n \n $Z(t)$","authors":"Hung M. Bui,&nbsp;Richard R. Hall","doi":"10.1112/mtk.12206","DOIUrl":null,"url":null,"abstract":"<p>Using the twisted fourth moment of the Riemann zeta-function, we study large gaps between consecutive zeros of the derivatives of Hardy's function <math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$Z(t)$</annotation>\n </semantics></math>, improving upon previous results of Conrey and Ghosh (J. Lond. Math. Soc. <b>32</b> (1985) 193–202), and of the second named author (Acta Arith. 111 (2004) 125–140). We also exhibit small distances between the zeros of <math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$Z(t)$</annotation>\n </semantics></math> and the zeros of <math>\n <semantics>\n <mrow>\n <msup>\n <mi>Z</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$Z^{(2k)}(t)$</annotation>\n </semantics></math> for every <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$k\\in \\mathbb {N}$</annotation>\n </semantics></math>, in support of our numerical observation that the zeros of <math>\n <semantics>\n <mrow>\n <msup>\n <mi>Z</mi>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$Z^{(k)}(t)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msup>\n <mi>Z</mi>\n <mrow>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$Z^{(\\ell )}(t)$</annotation>\n </semantics></math>, when <i>k</i> and ℓ have the same parity, seem to come in pairs that are very close to each other. The latter result is obtained using the mollified discrete second moment of the Riemann zeta-function.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12206","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12206","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Using the twisted fourth moment of the Riemann zeta-function, we study large gaps between consecutive zeros of the derivatives of Hardy's function Z ( t ) $Z(t)$ , improving upon previous results of Conrey and Ghosh (J. Lond. Math. Soc. 32 (1985) 193–202), and of the second named author (Acta Arith. 111 (2004) 125–140). We also exhibit small distances between the zeros of Z ( t ) $Z(t)$ and the zeros of Z ( 2 k ) ( t ) $Z^{(2k)}(t)$ for every k N $k\in \mathbb {N}$ , in support of our numerical observation that the zeros of Z ( k ) ( t ) $Z^{(k)}(t)$ and Z ( ) ( t ) $Z^{(\ell )}(t)$ , when k and ℓ have the same parity, seem to come in pairs that are very close to each other. The latter result is obtained using the mollified discrete second moment of the Riemann zeta-function.

Abstract Image

关于哈代函数Z(t)$Z(t)$导数的零点的注释
利用黎曼ζ函数的扭曲四阶矩,我们研究了Hardy函数Z(t)$Z(t,$的导数的连续零之间的大间隙,改进了Conrey和Ghosh(J.Lond.Math.Soc.32(1985)193–202)以及第二位作者(Acta Arith.111(2004)125–140)的先前结果。对于每k∈N$k\in\mathbb{N}$,我们还展示了Z(t)$Z(t(ℓ)(t) $Z^{(\ell)}(t)$,当k和ℓ 具有相同的奇偶性,似乎成对出现,彼此非常接近。后一个结果是使用黎曼ζ函数的软化离散二阶矩获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信