Some existence results for a quasilinear problem with source term in Zygmund-space

IF 0.5 4区 数学 Q3 MATHEMATICS
B. Hamour
{"title":"Some existence results for a quasilinear problem with source term in Zygmund-space","authors":"B. Hamour","doi":"10.4171/pm/2035","DOIUrl":null,"url":null,"abstract":"In this paper we study the existence of solution to the problem \n\\begin{equation*} \n\\left\\{\\begin{array}{l} u\\in H_{0}^{1}(\\Omega), \n\\\\[4pt] \n-\\textrm{div}\\,(A(x)Du)=H(x,u,Du)+f(x)+a_{0}(x)\\, u\\quad \\text{in} \n\\quad\\mathcal{D}'(\\Omega), \n\\end{array} \n\\right. \n\\end{equation*} \nwhere $\\Omega$ is an open bounded set of $\\mathbb{R}^{2}$, \n$A(x)$ a coercive matrix with coefficients in \n$L^\\infty(\\Omega)$, $H(x,s,\\xi)$ a Carath\\'eodory function \nsatisfying, for some $\\gamma >0$, \n$$ \n -c_{0}\\, A(x)\\, \\xi\\xi\\leq H(x,s,\\xi)\\,{\\rm sign}(s)\\leq \\gamma\\,A(x)\\,\\xi\\xi \\;\\;\\; \n{\\rm a.e. }\\; x\\in \\Omega,\\;\\;\\;\\forall s\\in\\mathbb{R},\\;\\;\\; \n \\forall\\xi \\in \\mathbb{R}^{2}. \n$$ \nHere $f$ belongs to $L^1(\\log L^1)(\\Omega)$ and $a_{0} \\geq 0$ to $L^{q}(\\Omega )$, $q>1$. \nFor $f$ and $a_{0}$ sufficiently small, we prove the existence of at least one solution $u$ of this problem which is such that $e^{\\delta_0 |u|} -1$ belongs to $H_{0}^{1}(\\Omega)$ for \nsome $\\delta_0\\geq\\gamma$ and satisfies an \\textit{a priori} estimate.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/pm/2035","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the existence of solution to the problem \begin{equation*} \left\{\begin{array}{l} u\in H_{0}^{1}(\Omega), \\[4pt] -\textrm{div}\,(A(x)Du)=H(x,u,Du)+f(x)+a_{0}(x)\, u\quad \text{in} \quad\mathcal{D}'(\Omega), \end{array} \right. \end{equation*} where $\Omega$ is an open bounded set of $\mathbb{R}^{2}$, $A(x)$ a coercive matrix with coefficients in $L^\infty(\Omega)$, $H(x,s,\xi)$ a Carath\'eodory function satisfying, for some $\gamma >0$, $$ -c_{0}\, A(x)\, \xi\xi\leq H(x,s,\xi)\,{\rm sign}(s)\leq \gamma\,A(x)\,\xi\xi \;\;\; {\rm a.e. }\; x\in \Omega,\;\;\;\forall s\in\mathbb{R},\;\;\; \forall\xi \in \mathbb{R}^{2}. $$ Here $f$ belongs to $L^1(\log L^1)(\Omega)$ and $a_{0} \geq 0$ to $L^{q}(\Omega )$, $q>1$. For $f$ and $a_{0}$ sufficiently small, we prove the existence of at least one solution $u$ of this problem which is such that $e^{\delta_0 |u|} -1$ belongs to $H_{0}^{1}(\Omega)$ for some $\delta_0\geq\gamma$ and satisfies an \textit{a priori} estimate.
Zygmund空间中具有源项的拟线性问题的一些存在性结果
本文研究了\begin{equation*} \left\{\begin{array}{l} u\in H_{0}^{1}(\Omega), \\[4pt] -\textrm{div}\,(A(x)Du)=H(x,u,Du)+f(x)+a_{0}(x)\, u\quad \text{in} \quad\mathcal{D}'(\Omega), \end{array} \right. \end{equation*}问题解的存在性,其中$\Omega$是$\mathbb{R}^{2}$的一个开有界集合,$A(x)$是$L^\infty(\Omega)$的一个带系数的强制矩阵,$H(x,s,\xi)$是一个carathsamodory函数,对于$\gamma >0$, $$ -c_{0}\, A(x)\, \xi\xi\leq H(x,s,\xi)\,{\rm sign}(s)\leq \gamma\,A(x)\,\xi\xi \;\;\; {\rm a.e. }\; x\in \Omega,\;\;\;\forall s\in\mathbb{R},\;\;\; \forall\xi \in \mathbb{R}^{2}. $$,这里$f$属于$L^1(\log L^1)(\Omega)$, $a_{0} \geq 0$属于$L^{q}(\Omega )$, $q>1$。对于$f$和$a_{0}$足够小,我们证明了这个问题的至少一个解$u$的存在性,使得$e^{\delta_0 |u|} -1$对于某些$\delta_0\geq\gamma$属于$H_{0}^{1}(\Omega)$,并且满足\textit{一个先验}估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信